• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
庞元恩, 石国栋, 段煜, 姚敏, 吉浩泽, 罗鸣, 李茂彪, 李旭. 基于搜索分析深度学习网络(SaNet)的粗粒土级配识别[J]. 岩土工程学报, 2024, 46(9): 1984-1993. DOI: 10.11779/CJGE20221516
引用本文: 庞元恩, 石国栋, 段煜, 姚敏, 吉浩泽, 罗鸣, 李茂彪, 李旭. 基于搜索分析深度学习网络(SaNet)的粗粒土级配识别[J]. 岩土工程学报, 2024, 46(9): 1984-1993. DOI: 10.11779/CJGE20221516
PANG Yuanen, SHI Guodong, DUAN Yu, YAO Min, JI Haoze, LUO Ming, LI Maobiao, LI Xu. Gradation recognition of coarse-grained soil based on searcher-analyzer deep learning network (SaNet)[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(9): 1984-1993. DOI: 10.11779/CJGE20221516
Citation: PANG Yuanen, SHI Guodong, DUAN Yu, YAO Min, JI Haoze, LUO Ming, LI Maobiao, LI Xu. Gradation recognition of coarse-grained soil based on searcher-analyzer deep learning network (SaNet)[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(9): 1984-1993. DOI: 10.11779/CJGE20221516

基于搜索分析深度学习网络(SaNet)的粗粒土级配识别

Gradation recognition of coarse-grained soil based on searcher-analyzer deep learning network (SaNet)

  • 摘要: 粗粒土广泛应用于路基、土石坝等填方工程中,然而传统筛分法耗时低效,无法满足级配快速的质量检测需求。为解决上述问题,构建了黄河粉土、石英砂粗粒土“图像-级配”关系数据库,共22380张图像;针对二维图像与三维级配的不匹配的矛盾,构建了任意图像输入数量的搜索-分析网络(searcher-analyzer network,SaNet),基于该网络训练所得模型精度随图像数的增加稳定提升,黄河粉土,石英砂的级配识别平均误差分别为1.63%,1.21%,拟合优度分别为0.995,0.992。结果表明:基于SaNet架构构建的机器学习模型具有较高的级配识别精度,能够满足填方工程中实时无损的级配检测需求。

     

    Abstract: The coarse-grained soil is widely used in embankments, earth-rock dams and other fill projects. However, the traditional sieving method is time-consuming and inefficient, failing to meet the rapid quality testing requirements for gradation. To address these issues, an "image-gradation" relational database is established for yellow river silt and quartz sand coarse-grained soil, comprising 22380 photos. In response to the mismatch between two-dimensional image and three-dimensional gradation, a searcher-analyzer network (SaNet) is developed to handle any number of image inputs. The model accuracy steadily improves with an increase in the number of images, with average errors of 1.63% and 1.21% for the recognition of yellow river silt and quartz sand gradations, and the coefficient of determination of 0.995 and 0.992, respectively. The results demonstrate that the proposed deep learning model on the SaNet architecture exhibits high accuracy in gradation recognition, meeting the real-time non-destructive gradation detection requirements in fill projects.

     

/

返回文章
返回