• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
钟紫蓝, 倪博, 史跃波, 张成明, 申家旭, 杜修力. 基于全连接神经网络的地铁车站响应分析与地震强度指标优选[J]. 岩土工程学报, 2024, 46(3): 567-577. DOI: 10.11779/CJGE20221448
引用本文: 钟紫蓝, 倪博, 史跃波, 张成明, 申家旭, 杜修力. 基于全连接神经网络的地铁车站响应分析与地震强度指标优选[J]. 岩土工程学报, 2024, 46(3): 567-577. DOI: 10.11779/CJGE20221448
ZHONG Zilan, NI Bo, SHI Yuebo, ZHANG Chengming, SHEN Jiaxu, DU Xiuli. Response analysis of subway station and optimization of seismic intensity measures based on fully connected neural network[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(3): 567-577. DOI: 10.11779/CJGE20221448
Citation: ZHONG Zilan, NI Bo, SHI Yuebo, ZHANG Chengming, SHEN Jiaxu, DU Xiuli. Response analysis of subway station and optimization of seismic intensity measures based on fully connected neural network[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(3): 567-577. DOI: 10.11779/CJGE20221448

基于全连接神经网络的地铁车站响应分析与地震强度指标优选

Response analysis of subway station and optimization of seismic intensity measures based on fully connected neural network

  • 摘要: 为了降低随机地震响应分析的计算成本,将人工神经网络方法用于构建概率地震需求模型(PSDM),以预测地铁车站结构的地震响应,并对适用于地铁车站结构响应预测的地震强度指标(IM)进行了优选。首先选取了200条实测地震动,计算IM,并对典型的三层三跨地铁车站结构进行有限元建模,将IM与最大层间位移角作为输入与输出训练全连接神经网络模型(FCNN),得到了最大层间位移角的预测模型。最后基于训练后FCNN输入层到隐含层中的权重矩阵与传统方法对IM进行优选,得出了对最大层间位移角影响最大的IM。研究结果表明:训练后FCNN能以0.95的精度预测地铁车站最大层间位移角,且计算耗时仅为数值模拟的1/5;针对矩形地下结构最大层间位移角,速度型和速度反应谱型指标的影响明显高于其他类型指标,其中速度谱强度(VSI)对最大层间位移角的影响最大。

     

    Abstract: In order to reduce the calculation cost of random seismic response analysis, the artificial neural network method is used to build a probabilistic seismic demand model (PSDM) to predict the seismic response of subway station structures, and the seismic intensity measure (IM) suitable for the prediction of subway station structural response is optimized. First, 200 measured ground motions are selected, IM is calculated, and the typical three-story and three-span subway station structure is modeled by the finite element method. Then, the IM and the maximum layer drift are used as the input and output to train the fully connected neural network (FCNN), and the prediction model for the maximum layer drift is obtained. Finally, the IM is optimized based on the weight matrix from the FCNN input layer to the hidden layer after training and the traditional methods, and the IM that has the greatest impact on the maximum layer drift is obtained. The results show that the FCNN after training can predict the maximum layer drift of subway station with an accuracy of 0.95, and the calculation efficiency is 18000 times higher than that of numerical simulation. For the maximum layer drift, the impact of velocity type and velocity response spectrum type indices is significantly higher than other types of indices, among which the velocity spectrum intensity (VSI) has the largest impact on the maximum layer drift.

     

/

返回文章
返回