• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
李元海, 徐晓华, 朱鸿鹄, 杨硕, 唐晓杰, 赵万勇. 基于计算机视觉的岩石裂隙识别表征与软件研制[J]. 岩土工程学报, 2024, 46(3): 459-469. DOI: 10.11779/CJGE20221239
引用本文: 李元海, 徐晓华, 朱鸿鹄, 杨硕, 唐晓杰, 赵万勇. 基于计算机视觉的岩石裂隙识别表征与软件研制[J]. 岩土工程学报, 2024, 46(3): 459-469. DOI: 10.11779/CJGE20221239
LI Yuanhai, XU Xiaohua, ZHU Honghu, YANG Shuo, TANG Xiaojie, ZHAO Wanyong. Identification and characterization of rock fractures based on computer vision and software development[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(3): 459-469. DOI: 10.11779/CJGE20221239
Citation: LI Yuanhai, XU Xiaohua, ZHU Honghu, YANG Shuo, TANG Xiaojie, ZHAO Wanyong. Identification and characterization of rock fractures based on computer vision and software development[J]. Chinese Journal of Geotechnical Engineering, 2024, 46(3): 459-469. DOI: 10.11779/CJGE20221239

基于计算机视觉的岩石裂隙识别表征与软件研制

Identification and characterization of rock fractures based on computer vision and software development

  • 摘要: 岩石裂隙特征是评判岩体结构及其完整性的核心指标,也是评估岩石工程安全稳定性的重要因素。针对岩石裂隙识别,采用深度学习方法,通过引入混合注意力机制对Unet模型进行了改进,有效提高了岩石裂隙识别的精度。针对交叉岩石裂隙的分离与特征提取,提出了一种基于迹线方向判定的裂隙分离与表征算法,依据裂隙分离的结果形式,采用重合追踪法或断裂追踪法分离交叉裂隙骨架,继而使用微分累加法、方框法、线性回归法求得裂隙的长度、宽度及倾角等几何特征指标。基于提出的算法,研制了一套具有图形用户界面的岩石裂隙图像智能识别与表征软件系统,实现了从深度学习模型参数选择、模型训练、裂隙识别、量化分析到结果可视化的完整功能。最后对岩石裂隙识别与分离表征算法的性能进行了评判,结果表明,改进Unet模型对复杂分布的裂隙识别效果最好,其总体识别性能要优于其他网络;骨架分离算法对常见类型交叉裂隙能够取得预期结果,表征算法对分离裂隙与交叉裂隙的表征精度高,对实际岩石裂隙图像的应用效果较好。研究成果可为基于计算机视觉的岩石工程试验与岩体结构检测技术研发提供参考依据。

     

    Abstract: The characteristics of rock fractures are the core indices for evaluating the structure and integrity of rock masses, and are also the important factors for evaluating the safety and stability of rock engineering. For the rock fracture recognition based on deep learning, the Unet model is improved by introducing the convolutional block attention module, effectively improving the accuracy of rock fracture recognition. For separation and feature extraction of intersection fractures, a fracture separation and characterization algorithm based on the trace direction judgment is proposed. According to the characteristics of fracture separation, the overlapping tracing method or fracture tracing method is used to separate the intersection fracture skeleton. Then, the differential accumulation method, box method and linear regression method are employed to calculate the geometric characteristic indices such as the length, width and dip angle of the fractures. Based on the proposed algorithm, a set of software system for the intelligent identification and characterization of rock fracture images with a graphical user interface is developed, achieving complete functions from deep learning model parameter selection, model training, fracture recognition, quantitative analysis to result visualization. Finally, the performance of rock fracture recognition and separation characterization algorithms is evaluated. The results show that the improved Unet model has the best recognition performance for complex distribution fractures, and its overall recognition performance is superior to that of other networks. The skeleton separation algorithm achieves the expected results for the separation of common types of intersection fractures, and the characterization algorithm has high accuracy in characterizing the separation and intersection fractures. It has good application effects on actual rock fracture images. The research can provide reference for rock engineering tests and detection of rock mass structure by using the computer vision.

     

/

返回文章
返回