• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
王磊, 杨进, 李莅临, 胡志强, 柯珂, 臧艳彬, 孙挺. 深水含水合物地层钻井井口稳定性研究[J]. 岩土工程学报, 2022, 44(12): 2312-2318. DOI: 10.11779/CJGE202212019
引用本文: 王磊, 杨进, 李莅临, 胡志强, 柯珂, 臧艳彬, 孙挺. 深水含水合物地层钻井井口稳定性研究[J]. 岩土工程学报, 2022, 44(12): 2312-2318. DOI: 10.11779/CJGE202212019
WANG Lei, YANG Jin, LI Li-lin, HU Zhi-qiang, KE Ke, ZANG Yan-bin, SUN Ting. Wellhead stability in gas hydrate formation during deep-water drilling[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(12): 2312-2318. DOI: 10.11779/CJGE202212019
Citation: WANG Lei, YANG Jin, LI Li-lin, HU Zhi-qiang, KE Ke, ZANG Yan-bin, SUN Ting. Wellhead stability in gas hydrate formation during deep-water drilling[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(12): 2312-2318. DOI: 10.11779/CJGE202212019

深水含水合物地层钻井井口稳定性研究

Wellhead stability in gas hydrate formation during deep-water drilling

  • 摘要: 深水钻井过程中,重达数百吨的水下井口在固井之前主要依靠周围海底土提供承载力,如果钻遇天然气水合物层,随着水合物的不断分解,地层的稳定性和承载力大幅下降,可能导致水下井口和表层导管失稳下沉,造成井眼报废等重大安全风险。分析了钻遇不同埋深和分布位置的水合物层对井口稳定性的影响,并开展了物理模拟试验,分析了不同饱和度和静置等候时间对承载力的影响规律。结果表明:水合物的埋深较浅,喷射下入过程中穿过水合物层后,地层的承载力最低,水下井口失稳的风险最高。水合物分解后地层极限承载力下降幅度最大可达35%。喷射后的静置等候时间对于水合物分解后的地层承载力的恢复影响很大,地层承载力在初期的1~12 h内增长明显,随后逐渐放缓,近似呈对数形式上升,建立了静置等候时间同承载力折减系数拟合模型;基于研究结果南海含水合物地层某井进行了表层导管下入深度设计和井口优选,在含水合物层钻井过程中可以适当增加表层导管入泥深度,增加静置等候时间,或使用吸力桩井口提高承载力,防止井口下沉,为深水含水合物地层钻井设计及井口安全评估提供了理论基础。

     

    Abstract: During the deep-water drilling, the underwater wellhead weighing hundreds of tons mainly depends on the surrounding seabed soil to provide the bearing capacity before cementing. If the natural gas hydrate layer is drilled, the stability and bearing capacity of the formation will decrease significantly with the continuous decomposition of the hydrate, which may lead to the instability and sinking of the underwater wellhead and surface conduit, resulting in major safety risks such as borehole scrapping. The influences of drilling hydrate layers with different buried depths and distribution positions on wellhead stability are analyzed, physical tests are carried out, and the influence laws of different saturations and standing waiting time on bearing capacity are investigated. The results show that the buried depth of hydrate is shallow. After passing through the hydrate layer during injection, the bearing capacity of the formation is the lowest, and the risk of underwater wellhead instability is the highest. After hydrate decomposition, the maximum reduction of the ultimate bearing capacity of the formation can reach 35%. The standing waiting time after injection has a great impact on the recovery of bearing capacity of the formation after hydrate decomposition. The bearing capacity of the formation increases obviously in the initial period of 1 ~ 12 h, then slows down gradually and increases approximately in logarithmic form. A fitting model between the standing waiting time and the reduction coefficient of bearing capacity is established. Based on the results, for a well in the hydrate formation in the South China Sea, the design of surface conduit running depth and the optimization of wellhead are performed. During the drilling of hydrate formation, the mud running depth of surface conduit can be appropriately increased, the standing waiting time can be increased, and the suction piles can be used to improve the bearing capacity of wellhead and prevent the wellhead from sinking. This study may provide a theoretical basis for the drilling design and wellhead safety assessment in deep-water hydrate formation.

     

/

返回文章
返回