• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
李卓, 方艺翔, 鲁洋, 刘康, 张勇敢. 前期降雨与库水位变化对土石坝渗流及稳定特性影响研究[J]. 岩土工程学报, 2022, 44(12): 2177-2186. DOI: 10.11779/CJGE202212004
引用本文: 李卓, 方艺翔, 鲁洋, 刘康, 张勇敢. 前期降雨与库水位变化对土石坝渗流及稳定特性影响研究[J]. 岩土工程学报, 2022, 44(12): 2177-2186. DOI: 10.11779/CJGE202212004
LI Zhuo, FANG Yi-xiang, LU Yang, LIU Kang, ZHANG Yong-gan. Influences of antecedent rainfall and change of reservoir water level on seepage and stability characteristics of earth rock dams[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(12): 2177-2186. DOI: 10.11779/CJGE202212004
Citation: LI Zhuo, FANG Yi-xiang, LU Yang, LIU Kang, ZHANG Yong-gan. Influences of antecedent rainfall and change of reservoir water level on seepage and stability characteristics of earth rock dams[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(12): 2177-2186. DOI: 10.11779/CJGE202212004

前期降雨与库水位变化对土石坝渗流及稳定特性影响研究

Influences of antecedent rainfall and change of reservoir water level on seepage and stability characteristics of earth rock dams

  • 摘要: 气候变化给水库大坝安全运行管理带来前所未有的挑战,前期降雨、库水位变化是影响坝坡失稳的关键因素,且碾压式土石坝设计规范未考虑降雨对大坝坝坡或浅层坝坡稳定性的影响,水库大坝滑坡或溃坝严重威胁人民的生命安全并造成巨大经济损失。以某水库心墙坝为研究对象,建立了有限元计算模型,研究了前期降雨、库水位变化对心墙坝渗流和稳定特性的影响,揭示了孔隙水压力、渗透比降和坝坡抗滑稳定安全系数的变化规律,并结合高密度电法和安全监测资料验证了计算模型的准确性。研究结果表明:前期降雨对大坝坝坡浅层范围孔隙水压力和抗滑稳定安全系数影响较大,对下游坝坡孔隙水压力影响程度由大到小依次为坡顶 > 坡肩(坡脚),随着降雨量增加下游坝坡10 m范围内孔隙水压力逐渐增大,坝坡表层土体达到饱和,主降雨后下游坝坡抗滑稳定安全系数减小较大;计算模型的浸润线高程与高密度电法、测压管水位高程均吻合,验证了计算模型的准确性;库水位是影响上游坝坡孔隙水压力和抗滑稳定安全系数的主要因素,对上游坝坡孔隙水压力影响程度由大到小依次为坡脚 > 坡肩 > 坡顶,降雨是导致下游坝坡孔隙水压力和抗滑稳定安全系数变化的主要因素;综合计算模型、高密度电法和安全监测资料,较好地分析了心墙坝孔隙水压力、渗透比降和抗滑稳定安全系数的变化规律,分析前期降雨、库水位变化为完善土石坝设计规范和水库大坝安全评价提供了科学依据。

     

    Abstract: The climate change has brought unprecedented challenges to the safe operation and management of reservoir dams. The antecedent rainfall and change of reservoir water level are the key factors affecting the instability of reservoir dam slopes, and the impact of rainfall on the stability of dam slopes or shallow dam slopes is not considered in the existing design code for rolled earth-rock fill dams. The landslide or dam break of reservoir dams seriously threatens human lives and causes huge economic losses. Taking the core wall dam of a reservoir as the research object, a finite element model is established, the influences of the antecedent rainfall and change of reservoir water level on the seepage and stability characteristics of the core wall dam are investigated, the variation rules of pore water pressure, hydraulic gradient and safety factor of anti-sliding stability of the dam slope are released, and the accuracy of the model is verified by using the high-density electrical method and the safety monitoring data. The research results show that the antecedent rainfall has a great impact on the pore water pressure and safety factor of anti-sliding stability in the shallow depth of the dam slope. The influence degree of the antecedent rainfall on the pore water pressure of the downstream dam slope has the descending order: slope top, slope shoulder and slope toe. With the increase of the antecedent rainfall, the pore water pressure within 10 m of the downstream dam slope gradually increases, and the surface soil of the downstream dam slope reaches the saturated state. After the main rainfall, the safety factor of anti-sliding stability of the downstream dam slope greatly decreases. The phreatic line elevation of the proposed model is consistent with the measured water level using the high-density electrical method and the piezometric tube, which verifies its accuracy. The reservoir water level is the main factor affecting the pore water pressure and safety factor of anti-sliding stability of the upstream slope. The influence degree on the pore water pressure of the upstream slope of the dam is in the descending order of slope toe, slope shoulder and slope top. The rainfall is the main factor inducing the change of pore water pressure and affecting the safety factor and anti-sliding stability of the downstream slope. The comprehensive model, high-density electrical method and safety monitoring data can be used to better analyze the change laws of pore water pressure, seepage gradient and safety factor of core wall dam. The analyses of the effects of the antecedent rainfall and change of reservoir water level provide a scientific basis for improving the design specifications of earth-rock dams and the safety evaluation of reservoir dams.

     

/

返回文章
返回