• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
闫长斌, 高子昂, 姚西桐, 汪鹤健, 杨风威, 杨继华, 卢高明. 考虑不确定性的TBM施工速度加权随机森林预测模型[J]. 岩土工程学报, 2023, 45(12): 2575-2583. DOI: 10.11779/CJGE20221139
引用本文: 闫长斌, 高子昂, 姚西桐, 汪鹤健, 杨风威, 杨继华, 卢高明. 考虑不确定性的TBM施工速度加权随机森林预测模型[J]. 岩土工程学报, 2023, 45(12): 2575-2583. DOI: 10.11779/CJGE20221139
YAN Changbin, GAO Ziang, YAO Xitong, WANG Hejian, YANG Fengwei, YANG Jihua, LU Gaoming. Weighted random forest prediction model for TBM advance rate considering uncertainty[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(12): 2575-2583. DOI: 10.11779/CJGE20221139
Citation: YAN Changbin, GAO Ziang, YAO Xitong, WANG Hejian, YANG Fengwei, YANG Jihua, LU Gaoming. Weighted random forest prediction model for TBM advance rate considering uncertainty[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(12): 2575-2583. DOI: 10.11779/CJGE20221139

考虑不确定性的TBM施工速度加权随机森林预测模型

Weighted random forest prediction model for TBM advance rate considering uncertainty

  • 摘要: TBM施工速度影响因素众多,具有显著的不确定性。对于地质参数的模糊性,采用岩体分级系统RMR、岩石耐磨性CAI和岩石硬度H衡量地质条件;对于施工过程中机械参数的随机性,利用TBM刀盘推力TF与转速RPM等主动控制参数进行分析;同时提出以其他因素停机时间占比来量化人为因素的不确定性。依托兰州水源地建设工程输水隧洞双护盾TBM施工实测数据,建立了考虑不确定性的TBM施工速度预测数据库和加权随机森林算法模型,并与随机森林、支持向量回归、BP神经网络等预测方法进行了对比分析。研究表明,加权随机森林模型中测试集的预测结果均方根误差和决定系数分别为1.59,0.97,预测精度及可靠性均优于其他3种模型。该模型采用不同权重赋值的方法优化超参数,具有高精度、不易过拟合等优点,表现出更好的泛化能力和鲁棒性。

     

    Abstract: There are many factors affecting TBM construction speed, and they have significant uncertainty. In view of the ambiguity of geological parameters, the rock classification system RMR, rock abrasiveness CAI and rock hardness H are used to measure the geological conditions. For the randomness of mechanical parameters in the construction process, the active control parameters such as TBM cutter head thrust TF and rotational speed RPM are used for analysis. At the same time, it is proposed to quantify the uncertainty of human factors by the proportion of downtime of other factors. Based on the measured data of the double-shield TBM construction in the water conveyance tunnel of the Lanzhou water source construction project, the prediction database of the TBM advance rate and the weighted random forest algorithm model considering uncertainty are established. In addition, other models such as random forest, support vector regression and BP neural network are used to verify the prediction accuracy of the proposed model. The results show that the error of the root mean square and the determination coefficient of the predicted results of the test set in the weighted random forest model are 1.59 and 0.97, respectively, and the prediction accuracy and reliability of the weighted random forest prediction model are better than those of the other three models. The model adopts the method of optimizing hyperparameters by assigning different weights, which has the advantages of high accuracy, difficult overfitting and better generalization capability and robustness.

     

/

返回文章
返回