• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
王才进, 蔡国军, 武猛, 刘薛宁, 刘松玉. 基于人工智能算法预测土体导热系数[J]. 岩土工程学报, 2022, 44(10): 1899-1907. DOI: 10.11779/CJGE202210016
引用本文: 王才进, 蔡国军, 武猛, 刘薛宁, 刘松玉. 基于人工智能算法预测土体导热系数[J]. 岩土工程学报, 2022, 44(10): 1899-1907. DOI: 10.11779/CJGE202210016
WANG Cai-jin, CAI Guo-jun, WU Meng, LIU Xue-ning, LIU Song-yu. Prediction of thermal conductivity of soils based on artificial intelligence algorithm[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(10): 1899-1907. DOI: 10.11779/CJGE202210016
Citation: WANG Cai-jin, CAI Guo-jun, WU Meng, LIU Xue-ning, LIU Song-yu. Prediction of thermal conductivity of soils based on artificial intelligence algorithm[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(10): 1899-1907. DOI: 10.11779/CJGE202210016

基于人工智能算法预测土体导热系数

Prediction of thermal conductivity of soils based on artificial intelligence algorithm

  • 摘要: 导热系数是土体热力学特征的基本参数,也是岩土工程热工计算的重要参数之一。它受土体骨架、矿物成分和饱和度等因素的影响。对土体导热系数的影响因素进行分析,采用各种先进的人工智能算法来研究土体的传热机理,并建立预测模型。预测模型通过相关系数R2、均方根误差RMSE、绝对平均误差MAE和方差比VAF进行检验,对误差进行统计分析,并对预测模型的稳健性进行分析,预测模型与传统的经验关系模型进行对比分析。结果表明:人工神经网络(ANN)模型、基于自适应神经网络的模糊推理系统(ANFIS)模型和支持向量机(SVM)模型都准确的预测出土体的导热系数,相关系数R2大于0.9,均方根误差RMSE小于0.2 (W·m-1·K-1),绝对平均误差MAE小于0.13 (W·m-1·K-1),方差比VAF大于90%。提出的预测模型精度显著高于传统经验关系模型。根据误差统计和稳健性分析结果,建议土体导热系数的预测计算优先使用ANN模型和SVM模型。

     

    Abstract: The thermal conductivity is the basic geotechnical thermodynamic parameter, and it is also one of the important parameters in the design of thermal geotechnical structures. It is affected by the factors such as soil skeleton mineral composition, and degree of saturation. The influencing factors for the thermal conductivity of soils are analyzed. Various advanced artificial intelligence algorithms are used to investigate the heat transfer mechanism of soils, and to establish prediction models. The correlation coefficient (R2), root mean square error (RMSE), mean absolute error (MAE) and variance ratio (VAF) are calculated to analyze the prediction error and robustness of these prediction models. By comparing withthe traditional empirical relationship model, the results show that the artificial neural network (ANN) model, the adaptive neural network-based fuzzy inference system (ANFIS) model and the support vector machine (SVM) model all predict the thermal conductivity of soils acceptably. The R2 is greater than 0.9, the RMSE is less than 0.2 (W·m-1·K-1), the MAE is less than 0.13 (W·m-1·K-1), and the VAF is greater than 88% for all these prediction models. The accuracy of the proposed prediction models is significantly higher than that of the traditional empirical relationship model. According to the results of error statistics and robustness analysis, the ANN and SVM models are recommended in the prediction of the thermal conductivity of soils.

     

/

返回文章
返回