• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
李峙, 刘福深, 杨仲轩, 詹伟. 考虑THM耦合的地热能源桩热-力行为分析[J]. 岩土工程学报, 2023, 45(10): 2129-2138. DOI: 10.11779/CJGE20220920
引用本文: 李峙, 刘福深, 杨仲轩, 詹伟. 考虑THM耦合的地热能源桩热-力行为分析[J]. 岩土工程学报, 2023, 45(10): 2129-2138. DOI: 10.11779/CJGE20220920
LI Zhi, LIU Fushen, YANG Zhongxuan, ZHAN Wei. Thermo-mechanical behavior of energy piles based on coupled THM model[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(10): 2129-2138. DOI: 10.11779/CJGE20220920
Citation: LI Zhi, LIU Fushen, YANG Zhongxuan, ZHAN Wei. Thermo-mechanical behavior of energy piles based on coupled THM model[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(10): 2129-2138. DOI: 10.11779/CJGE20220920

考虑THM耦合的地热能源桩热-力行为分析

Thermo-mechanical behavior of energy piles based on coupled THM model

  • 摘要: 地热能源桩除了可以承受建筑物的上部结构荷载,还能提供低碳、环保和可持续的制冷/制热功能,因此在土木与能源等行业受到广泛关注。热-水-力(THM)三场耦合效应显著影响能源桩和土体的相互作用及其承载变形特性。利用多孔介质混合物理论推导了THM全耦合的基本控制方程,并通过与饱和非等温固结问题的理论解对比,验证了该耦合问题基于COMSOL有限元分析方法有效性。在此基础上,考虑流体性质随温度的变化和不同的桩土接触模型,开展了基于THM耦合的能源桩二维有限元模型的数值分析,并与离心数值模型和现场试验数据进行对比。计算结果表明该耦合模型不但能预测能源桩中应力、应变和位移场分布与演化规律,还能较好地模拟桩土多场耦合行为。研究结果表明,THM耦合效应对土工分析具有重要影响,研究成果可为能源桩设计、施工及使用过程中所涉及的多场耦合问题提供参考依据。

     

    Abstract: The energy piles can underpin the superstructures and provide low-carbon, environmentally friendly and sustainable cooling/heating functions, leading to ever-growing attention received from the civil and energy industries. The thermo-hydro-mechanical (THM) coupling may significantly affect the interaction between the energy piles and the surrounding soils, and thus the load-bearing and deformation characteristics. In this study, the basic governing equations for full THM coupling are derived based on the standard mixture theory of porous media. The finite element method THM for and its implementation in COMSOL software are verified through comparisons with the analytical solutions to the saturated non-isothermal consolidation problem. Based on the THM coupled framework, a two-dimensional finite element model for the energy piles is further established considering the change of fluid properties with temperature and different pile-soil contact models, and the specific configuration and modeling procedures are described. The results indicate that the proposed model can predict the distribution and evolution of stresses, strains and displacements on the energy piles, and further capture the multi-physical behaviors associated with the piles and soils. This study highlights the importance of the consideration of THM coupling effects, which can provide a useful guidance for the multi-physical problems involved in the design, construction and utilization of the energy piles.

     

/

返回文章
返回