• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
汪小刚, 林兴超. 基于刚性块体离散的边坡稳定极限分析法[J]. 岩土工程学报, 2022, 44(9): 1587-1597. DOI: 10.11779/CJGE202209003
引用本文: 汪小刚, 林兴超. 基于刚性块体离散的边坡稳定极限分析法[J]. 岩土工程学报, 2022, 44(9): 1587-1597. DOI: 10.11779/CJGE202209003
WANG Xiao-gang, LIN Xing-chao. Limit analysis method for slope stability based on discretization of rigid blocks[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(9): 1587-1597. DOI: 10.11779/CJGE202209003
Citation: WANG Xiao-gang, LIN Xing-chao. Limit analysis method for slope stability based on discretization of rigid blocks[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(9): 1587-1597. DOI: 10.11779/CJGE202209003

基于刚性块体离散的边坡稳定极限分析法

Limit analysis method for slope stability based on discretization of rigid blocks

  • 摘要: 针对边坡稳定分析这一岩土力学的经典问题,放弃通过极限平衡等式方程和引入假定来直接求解边坡安全系数的传统思路,在建立边坡极限状态机构一般性构建方法的基础上,依据塑性力学上下限定理,以界面力或速度为主要变量,以应力许可静力场或运动许可位移场的基本要求为约束条件,在不引入任何假定的前提下,将求解边坡安全系数的问题转化为求解安全系数上限、下限解的优化数学问题,通过上下限值逐渐逼近安全系数,形成了完整统一的边坡稳定极限分析方法体系。该方法体系由于没有引入任何假定,不仅使边坡稳定分析方法具备了更为严密的理论基础,而且可方便地推广到三维领域。通过6个代表性算例验证了该方法计算结果的准确性、可靠性以及工程应用的合理性、可行性。

     

    Abstract: The classic slope stability analysis problem is solved by abandoning the traditional and direct solutions for safety factors of slopes, such as the limit equilibrium equation and the introduction of assumptions. Instead, the general construction method for constructing a slope limit state mechanism is adopted, and the plastic (upper and lower) limit theorems are taken into account. Moreover, taking the interfacial forces and velocities as the main variables and the basic requirements for statically admissible stress field or kinematically admissible displacement field as the constraints, and on the precondition that all assumptions are omitted, the solution for the safety factor problem of slopes is converted into an upper- and lower-bound optimization problem. Furthermore, a complete and united limit analysis method for slope stability is established by gradually shifting the upper- and lower-limit values toward the real solution for the safety factor. To conclude, the proposed method can provide a robust theoretical basis for slope stability analysis due to the omission of assumptions and address the bottleneck resulting from the method of expanding the 2D slope stability analysis to its 3D form. The accuracy and realiability of the calculated results as well as the rationality and feasibility of its engineering applications are validated through 6 representative examples.

     

/

返回文章
返回