• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
张冬梅, 周文鼎, 卜祥洪, 姜燕, 贾恺, 杨光华. 盾构–钢筋钢纤维混凝土双层衬砌内水压下破坏机理试验研究[J]. 岩土工程学报, 2022, 44(8): 1528-1534. DOI: 10.11779/CJGE202208018
引用本文: 张冬梅, 周文鼎, 卜祥洪, 姜燕, 贾恺, 杨光华. 盾构–钢筋钢纤维混凝土双层衬砌内水压下破坏机理试验研究[J]. 岩土工程学报, 2022, 44(8): 1528-1534. DOI: 10.11779/CJGE202208018
ZHANG Dong-mei, ZHOU Wen-ding, BU Xiang-hong, JIANG Yan, JIA Kai, YANG Guang-hua. Experimental study on performance of shield–reinforced steel fiber concrete double-layer linings under internal water pressure[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(8): 1528-1534. DOI: 10.11779/CJGE202208018
Citation: ZHANG Dong-mei, ZHOU Wen-ding, BU Xiang-hong, JIANG Yan, JIA Kai, YANG Guang-hua. Experimental study on performance of shield–reinforced steel fiber concrete double-layer linings under internal water pressure[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(8): 1528-1534. DOI: 10.11779/CJGE202208018

盾构–钢筋钢纤维混凝土双层衬砌内水压下破坏机理试验研究

Experimental study on performance of shield–reinforced steel fiber concrete double-layer linings under internal water pressure

  • 摘要: 利用1∶1原型试验对盾构–钢筋钢纤维混凝土双层衬砌在内水压下的受力变形规律及破坏模式展开研究。试验结果表明,盾构管片接头是双层衬砌抗拉薄弱位置,内衬环面临近管片接头处首先产生裂缝然后逐渐接近均匀分布;盾构–钢筋钢纤维混凝土双层衬砌受力破坏过程可以大致分为4个阶段:①线弹性阶段,该阶段衬砌受力变形随内水压的增加线性变化;②内衬开裂阶段,内衬开裂后钢纤维发挥桥接作用,内衬环向抗拉刚度逐渐降低,盾构管片分担的内水压比例逐渐上升,内衬轴力逐渐由钢筋承担;③内衬开裂稳定阶段和接头损伤阶段,该阶段内衬残余刚度趋于稳定,管片分担的内水压比例不再增加,随后部分管片接头对应混凝土出现压损,管片抗拉刚度下降;④衬砌破坏阶段,内衬钢筋逐渐屈服,最终部分盾构管片接头出现严重破坏。原型试验的结果揭示了盾构–钢筋钢纤维混凝土双层衬砌在内水压作用下的破坏过程和机理,可为工程实践提供参考。

     

    Abstract: Based on the prototype of shield-reinforced steel fiber conducted double-layer linings with the scale of 1∶1, model tests of deformation laws and failure under high internal water pressure are conducted. The test results show that the segmental joints are the tensile weak positions of double-layer linings, and the cracks occur in the inner lining near the joints firstly and then are evenly distributed along the circumferential direction. The failure process of the double-layer linings can be divided into four stages: (1) At the linear elastic stage, the stress and deformation of the linings change linearly with the increase of the internal water pressure. (2) At the cracking stage of the linings, the steel fiber plays a bridging role, the stiffness of the linings gradually decreases, the proportion of internal water pressure shared by the segmental linings gradually increases, and the axial force of the linings is gradually transferred to the reinforcing bars. (3) At the stable stage of cracking of the linings and the damaged stage of the joints, the residual stiffness of the inner linings tends to be stable, and the proportion of the internal water pressure shared by the segmental linings no longer increases, and then the concrete of some segmental joints is damaged, and the tensile stiffness of the segement decreases. (4) At the failure, the stresses of stage of the linings gradually reach the yield value, and eventually the severe damage of segmental joints occurs. The experimental results reveal the failure process of the double-layer linings subjected to internal water pressure, and they can be referred to for the engineering application.

     

/

返回文章
返回