• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
姬建, 姜振, 殷鑫, 王涛, 崔红志, 张卫杰. 边坡随机场数字图像特征CNN深度学习及可靠度分析[J]. 岩土工程学报, 2022, 44(8): 1463-1473. DOI: 10.11779/CJGE202208011
引用本文: 姬建, 姜振, 殷鑫, 王涛, 崔红志, 张卫杰. 边坡随机场数字图像特征CNN深度学习及可靠度分析[J]. 岩土工程学报, 2022, 44(8): 1463-1473. DOI: 10.11779/CJGE202208011
JI Jian, JIANG Zhen, YIN Xin, WANG Tao, CUI Hong-zhi, ZHANG Wei-jie. Slope reliability analysis based on deep learning of digital images of random fields using CNN[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(8): 1463-1473. DOI: 10.11779/CJGE202208011
Citation: JI Jian, JIANG Zhen, YIN Xin, WANG Tao, CUI Hong-zhi, ZHANG Wei-jie. Slope reliability analysis based on deep learning of digital images of random fields using CNN[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(8): 1463-1473. DOI: 10.11779/CJGE202208011

边坡随机场数字图像特征CNN深度学习及可靠度分析

Slope reliability analysis based on deep learning of digital images of random fields using CNN

  • 摘要: 考虑土体强度空间变异性,提出了数字图像化随机场特征深度学习模型并进行边坡稳定可靠度分析。通过Karhunen-Loeve展开法离散边坡土体随机场并将离散结果转化为数字图像,建立起随机场图像与边坡功能函数值之间隐式关系的卷积神经网络(CNN)代理模型,进而计算随机场数字图像表征后边坡的失效概率。在建立CNN代理模型时,采用拉丁超立方抽样、贝叶斯优化和五折交叉验证以提高精度。最后以单层不排水饱和黏土边坡和双层黏性土边坡为例说明了该方法的有效性。结果表明:在随机场高维表征图像化和边坡小概率失稳情况下,所提CNN深度学习模型能够比较精确地逼近真实边坡稳定性计算结果,进而显著提高考虑随机场模拟的边坡可靠度分析计算效率。

     

    Abstract: Considering the spatial variability of soil strength, a deep learning model for the characteristics of random fields is proposed for reliability analysis of slope stability. The random fields of a soil slope are discretized by the Karhunen-Loeve expansion method, and the discretized results are converted into digital images. Then, a convolutional neural network (CNN) surrogate model is established to approach the implicit relationship between the images and the responses of the performance function. Based on the surrogate model, the probability of failure of the slope is calculated. When training the CNN surrogate model, the Latin-Hypercube sampling technique, Bayesian optimization and 5-fold cross-validation are employed to improve the accuracy. Finally, the effectiveness of the proposed method is demonstrated by two case studies, namely a single-layer saturated clay slope under undrained conditions and a two-layered cohesive soil slope. The results show that in the case of high dimensions and small probability, the proposed CNN deep learning model can approximate the original model accurately, and significantly reduce the computational cost of slope reliability analysis considering the simulation of the random fields.

     

/

返回文章
返回