• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
孙锐, 张箭, 阳军生, 杨峰. 基于Mohr-Coulomb准则和二阶锥规划技术的轴对称自适应下限有限元法[J]. 岩土工程学报, 2023, 45(11): 2387-2395. DOI: 10.11779/CJGE20220781
引用本文: 孙锐, 张箭, 阳军生, 杨峰. 基于Mohr-Coulomb准则和二阶锥规划技术的轴对称自适应下限有限元法[J]. 岩土工程学报, 2023, 45(11): 2387-2395. DOI: 10.11779/CJGE20220781
SUN Rui, ZHANG Jian, YANG Junsheng, YANG Feng. Axisymmetric adaptive lower bound finite element method based on Mohr-Coulomb yield criterion and second-order cone programming[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(11): 2387-2395. DOI: 10.11779/CJGE20220781
Citation: SUN Rui, ZHANG Jian, YANG Junsheng, YANG Feng. Axisymmetric adaptive lower bound finite element method based on Mohr-Coulomb yield criterion and second-order cone programming[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(11): 2387-2395. DOI: 10.11779/CJGE20220781

基于Mohr-Coulomb准则和二阶锥规划技术的轴对称自适应下限有限元法

Axisymmetric adaptive lower bound finite element method based on Mohr-Coulomb yield criterion and second-order cone programming

  • 摘要: 轴对称Mohr-Coulomb准则屈服面的角点问题导致其在数值计算中存在困难,如何高效处理该屈服准则一直是极限分析下限有限元法的重要内容。首先,引入完全塑性假定将轴对称Mohr-Coulomb准则转化为1组不等式约束和3个线性等式约束;然后,将不等式约束直接转化为二阶锥约束,避免了对角点进行光滑近似处理;最后,将基于Mohr-Coulomb准则的轴对称极限分析下限有限元计算模型转化为具有较高计算效率的二阶锥规划数学优化模型。极限分析下限有限元法采用的线性应力单元难以精确模拟破坏区域的应力变化,单元的分布形式对计算精度存在较大影响。因此提出一种基于单元应力的网格自适应加密策略,通过判断单元内节点应力接近屈服的程度,自动识别破坏区域待加密的单元,实现对破坏区域应力分布的精确模拟,进而能够以较少单元获得高精度下限解。通过分析圆形基础承载力及竖向锚板极限抗拔力等典型轴对称岩土工程稳定性问题,表明了所提方法具有较高计算效率及计算精度,具有一定的理论价值和应用前景。

     

    Abstract: The axisymmetric Mohr Coulomb yield surfaces have edges and corners in the three-dimensional stress space, which leads to difficulties in numerical calculation. Therefore, how to deal with the axisymmetric Mohr-Coulomb criterion efficiently has always been an important research content of the lower bound finite element limit analysis (LB-FELA) method. Firstly, the axisymmetric Mohr-Coulomb criterion is transformed into a set of inequality constraints and three linear equality constraints by introducing the complete plasticity assumption. Then, the inequality constraints are directly transformed into the second-order cone ones, which avoids the smooth approximation of numerical singularities. Finally, the axisymmetric LB-FELA model based on the Mohr Coulomb criterion is transformed into a mathematical optimization one of the second-order cone programming. The linear stress element adopted by the axisymmetric LB-FELA cannot accurately simulate the stress change in the failure region. Therefore, the mesh distribution form has a great impact on the calculation accuracy of the LB-FELA. To solve this problem, an adaptive mesh refinement strategy based on the element yield residual is proposed. By judging the degree of the node stress in the element close to the yield, the elements can be automatically identified and refined in the failure area. By analyzing the stability problems of typical axisymmetric geotechnical projects such as the bearing capacity of circular foundation and the ultimate uplift capacity of vertical anchor plate, it is shown that the proposed method has high calculation efficiency and accuracy, and it has certain theoretical value and application prospect.

     

/

返回文章
返回