• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
黄献文, 姜朋明, 周爱兆, 王伟, 唐楚轩. 基于颗粒分形特征的土体渗透特性预测模型[J]. 岩土工程学报, 2023, 45(9): 1907-1915. DOI: 10.11779/CJGE20220772
引用本文: 黄献文, 姜朋明, 周爱兆, 王伟, 唐楚轩. 基于颗粒分形特征的土体渗透特性预测模型[J]. 岩土工程学报, 2023, 45(9): 1907-1915. DOI: 10.11779/CJGE20220772
HUANG Xianwen, JIANG Pengming, ZHOU Aizhao, WANG Wei, TANG Chuxuan. Prediction model for soil permeability based on fractal characteristics of particles[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(9): 1907-1915. DOI: 10.11779/CJGE20220772
Citation: HUANG Xianwen, JIANG Pengming, ZHOU Aizhao, WANG Wei, TANG Chuxuan. Prediction model for soil permeability based on fractal characteristics of particles[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(9): 1907-1915. DOI: 10.11779/CJGE20220772

基于颗粒分形特征的土体渗透特性预测模型

Prediction model for soil permeability based on fractal characteristics of particles

  • 摘要: 为预测土体渗透特性,基于其微观结构,提出了土颗粒分形特征识别算法与渗流孔隙通道重建算法,并将重建几何模型与传统有限元法联合,建立了土体渗透系数蒙特卡洛预测模型。首先,依据土体的微观结构特征,通过分形特征识别算法(FCIM)识别土壤中颗粒的椭圆度、粗糙度、级配、孔隙率以及长轴倾角;而后依据这些特征参数,采用渗流孔隙通道分形重建算法(FCRM)重塑土体微观结构模型;基于生成的微观结构模型,联合运用有限元法(FEM)与蒙特卡洛法(MC),获得具有统计意义的土体渗透系数。通过与试验结果对比,验证了预测模型的合理性(误差小于5%)。通过多因素分析,研究椭圆度、粗糙度、级配、孔隙率以及长轴倾角对土体渗透系数的影响,其大小关系依次为:级配 > 孔隙率 > 长轴倾角 > 椭圆度 > 粗糙度,皮尔逊相关系数分别为-0.3512,0.3065,-0.101,-0.042和-0.010;通过对渗流通道分析,发现级配和孔隙率主要影响渗流通道的“宽度”和“曲折度”;椭圆度、粗糙度和长轴倾角主要影响渗流通道绕行的“角度”和“长度”。

     

    Abstract: In order to predict the permeability characteristics of soils, a fractal recognition algorithm of soil particles and a seepage channel reconstruction algorithm are proposed based on the microstructure, and a Monte Carlo prediction model for permeability coefficient of soils is established by combining the geometric reconstruction model with the finite element method. Firstly, according to the microstructural characteristics of soils, the ellipticity, roughness, gradation, porosity and long-axis angle of soil particles are identified by the fractal characteristic identification method. Then, based on these characteristic parameters, the fractal channel reconstruction method is used to reconstruct the microstructural model. Based on the generated microstructure model, the finite element method and the Monte Carlo method are combined to calculate the permeability coefficient with statistical significance. Compared with the experimental results, the rationality of the prediction model is verified (the error is less than 5%). Through the multi-factor analysis, the influences of ellipticity, roughness, gradation, porosity and long-axis angle on permeability coefficient of soils are studied. The order of magnitude relationship is gradation > porosity > long-axis dip angle > ellipticity > roughness. The pearson correlation coefficients are -0.3512, 0.3065, -0.101, -0.042 and -0.010, respectively. Through the analysis of the seepage channel, it is found that the "width" and "tortuosity" of the seepage channel are mainly affected by the gradation and porosity. The ovality, roughness and long axis dip angle mainly affect the "angle" and "length" of the seepage channel.

     

/

返回文章
返回