• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
李明超, 李明泽, 韩帅, 张佳文, 赵文超. 耦合多源勘察信息的水工岩体完整性智能评价方法[J]. 岩土工程学报, 2023, 45(8): 1674-1683. DOI: 10.11779/CJGE20220718
引用本文: 李明超, 李明泽, 韩帅, 张佳文, 赵文超. 耦合多源勘察信息的水工岩体完整性智能评价方法[J]. 岩土工程学报, 2023, 45(8): 1674-1683. DOI: 10.11779/CJGE20220718
LI Mingchao, LI Mingze, HAN Shuai, ZHANG Jiawen, ZHAO Wenchao. Intelligent evaluation method for integrity of hydraulic rock mass by coupling multi-source survey information[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(8): 1674-1683. DOI: 10.11779/CJGE20220718
Citation: LI Mingchao, LI Mingze, HAN Shuai, ZHANG Jiawen, ZHAO Wenchao. Intelligent evaluation method for integrity of hydraulic rock mass by coupling multi-source survey information[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(8): 1674-1683. DOI: 10.11779/CJGE20220718

耦合多源勘察信息的水工岩体完整性智能评价方法

Intelligent evaluation method for integrity of hydraulic rock mass by coupling multi-source survey information

  • 摘要: 岩体完整性是评价水工岩体质量等级的重要参数,传统方法往往采用的单一指标难以全面反映结构面、地下水、卸荷等地质条件对评判结果的综合影响。提出了一种耦合多源勘察信息的水工岩体完整性智能评价方法。首先利用合成少数类过采样算法对勘察信息数据进行均衡处理,改善数据集结构;进而采用随机森林算法分别对原始岩体完整性数据和预处理后的数据进行预测,结合实际工程数据进行有效性及适用性验证,并针对影响岩体完整性的不同因素对预测结果进行了讨论分析。结果表明,所提出的方法对数据集的均衡处理可有效改善少数类岩体样本完整性的评价准确率,通过耦合并挖掘不同完整性指标中的深层信息,实现岩体完整性的智能评价,为进一步辅助岩体质量评价提供新的方法。

     

    Abstract: The integrity of rock mass is an important parameter in evaluating the quality grade of hydraulic rock mass. The traditional methods often adopt a single index that cannot fully reflect the comprehensive influences of geological conditions such as structural plane, groundwater, and unloading on the evaluation results. An intelligent evaluation method for the integrity of hydraulic rock mass is proposed by coupling with multi-source survey information. Firstly, the synthetic minority oversampling (SMOTE) algorithm is used to balance the survey information data to improve the data set structure. Then the random forest algorithm is used to predict the original rock mass integrity data and the pre-processed data, respectively. Based on the data of actual projects, the validity and applicability are verified, and the predicted results are discussed and analyzed according to different factors affecting the integrity of rock mass. The results show that the proposed method can effectively improve the evaluation accuracy of the integrity of a few rock samples by balancing the data sets. By coupling and mining the deep information of different integrity indexes, the intelligent evaluation of rock mass integrity can be realized, which provides a new method for further assisting the evaluation of rock mass quality.

     

/

返回文章
返回