• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
洪泽群, 石荣剑, 岳丰田, 韩磊. 单圈孔矩形布置的大断面冻结稳态温度场解析解[J]. 岩土工程学报, 2023, 45(8): 1653-1663. DOI: 10.11779/CJGE20220700
引用本文: 洪泽群, 石荣剑, 岳丰田, 韩磊. 单圈孔矩形布置的大断面冻结稳态温度场解析解[J]. 岩土工程学报, 2023, 45(8): 1653-1663. DOI: 10.11779/CJGE20220700
HONG Zequn, SHI Rongjian, YUE Fengtian, HAN Lei. Analytical solutions of steady-state temperature field for large-section freezing with rectangular layout of single-ring holes[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(8): 1653-1663. DOI: 10.11779/CJGE20220700
Citation: HONG Zequn, SHI Rongjian, YUE Fengtian, HAN Lei. Analytical solutions of steady-state temperature field for large-section freezing with rectangular layout of single-ring holes[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(8): 1653-1663. DOI: 10.11779/CJGE20220700

单圈孔矩形布置的大断面冻结稳态温度场解析解

Analytical solutions of steady-state temperature field for large-section freezing with rectangular layout of single-ring holes

  • 摘要: 温度场是人工冻结理论的重要研究方向,也是评估冻结壁力学状态和封水性能的基础。对于周圈封闭布管形式的温度场,目前仅有规则环形条件下的解析解,包括单圈布置和双圈布置。但实际冻结工程中冻结管矩形布置也十分常见,特别是地铁车站冻结暗挖工程,其温度场尚无解答。根据冻结管矩形和环形布置的几何一致性,基于4根冻结管模型首先提出了矩形布管问题的“以圆代方”求解方法。进而结合稳态导热控制方程的边界可分离特性和势函数叠加原理,求解了8根管矩形布置和多根管广义矩形布置的温度场解析解。通过对比瞬态数值计算结果和模型试验结果,验证了解析求解方法的正确性和解析解的适用性。结果表明,矩形布管的温度场等值线在靠近冻结管圈径处显示出高度的矩形分布特征,随着计算点远离冻结圈,等温线逐渐向圆形转化。矩形冻结壁内侧发展速度大于外侧,内外0℃线内温度场受矩形布管影响显著,在冻结设计时应合理考虑冻结管布置形状对冻结壁几何特征的影响。

     

    Abstract: The temperature field is the basis for assessing the mechanical state and water-sealing performance of the frozen wall, which is an important research direction of the artificial freezing theory. For the freezing pipes in the form of a closed circumferential arrangement, there are only analytical solutions under regular annular conditions, including single-circle and double-circle models. However, the rectangular arrangement of freezing pipes is also very common in practical projects, especially for the subway station projects that use frozen concealed excavation, and the temperature field has not yet been answered. According to the geometric consistency of rectangular and annular layouts, based on the four-pipe model, a method of "replacing squares with circles" is firstly proposed for the rectangular problem. Furthermore, considering the boundary separable properties of the steady-state heat conduction control equation and the superposition principle of potential functions, the analytical solutions of the temperature field for rectangular arrangement with eight pipes and the generalized rectangular arrangement with multiple pipes are solved. By comparing with the transient numerical results the model test ones, the correctness and the applicability of the analytical solutions are verified. The results show that the temperature field exhibits a highly rectangular distribution characteristic near the pipe layout line, and the isotherm gradually transforms to a circular shape as it moves away from the freezing pipes. The inner side of the rectangular freezing wall develops faster than the outer side, and the temperature field inside and outside the 0℃ line is significantly affected. The influences of the freezing pipe arrangement on the geometric characteristics of the freezing wall should be reasonably considered in the design of freezing scheme.

     

/

返回文章
返回