• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
陈思宇, 张嘎. 基于空间分布的边坡位移测量数据质量评估方法研究[J]. 岩土工程学报, 2022, 44(5): 845-850. DOI: 10.11779/CJGE202205007
引用本文: 陈思宇, 张嘎. 基于空间分布的边坡位移测量数据质量评估方法研究[J]. 岩土工程学报, 2022, 44(5): 845-850. DOI: 10.11779/CJGE202205007
CHEN Si-yu, ZHANG Ga. Quality evaluation for measured data of slope displacement based on its spatial distribution[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(5): 845-850. DOI: 10.11779/CJGE202205007
Citation: CHEN Si-yu, ZHANG Ga. Quality evaluation for measured data of slope displacement based on its spatial distribution[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(5): 845-850. DOI: 10.11779/CJGE202205007

基于空间分布的边坡位移测量数据质量评估方法研究

Quality evaluation for measured data of slope displacement based on its spatial distribution

  • 摘要: 滑坡灾害预警依赖于边坡位移等监测数据,因此数据质量评估具有重要意义。对边坡剖面位移多点测量数据进行了分析,结果表明边坡在变形破坏过程中一般可划分为不同位移特点的3个区域,同区域各点的位移测量数据具有相关性并且该相关性随着测点间距离的增加而衰减。基于规律认识,设计了边坡区域划分算法,提出一种测点相似度衰减方程,建立了一种边坡位移大数据质量快速评估方法。针对边坡离心模型试验位移测量结果进行分析,验证了方法的有效性。该方法更新迭代时间复杂度较低,能够满足大数据快速处理的要求。

     

    Abstract: The landslide hazard warning relies on the monitoring data such as slope displacement. Therefore, data quality assessment is of great significance in practice. The multi-point measured data of slope profile displacement are analyzed. The results show that the slope can generally be divided into three regions with different displacement characteristics during the deformation and failure. The slope displacements of points in the same area are correlated, and the correlation degree decreases as the distance between the measuring points increases. Accordingly, an algorithm for the slope region division is designed. A correlation decay equation for measuring points is proposed, and then thus a method is set up for the rapid assessment on the quality of large data of slope displacement. The slope displacement measured in a centrifuge model test is analyzed to confirm the effectiveness of the proposed method. The method has low complexity of update iteration time and is suitable for fast processing of big data.

     

/

返回文章
返回