• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
肖鹏, 刘汉龙, 史金权, 何想, 楚剑, 肖杨. 微生物加固钙质砂地基动力响应特性研究[J]. 岩土工程学报, 2023, 45(6): 1303-1313. DOI: 10.11779/CJGE20220455
引用本文: 肖鹏, 刘汉龙, 史金权, 何想, 楚剑, 肖杨. 微生物加固钙质砂地基动力响应特性研究[J]. 岩土工程学报, 2023, 45(6): 1303-1313. DOI: 10.11779/CJGE20220455
XIAO Peng, LIU Hanlong, SHI Jinquan, HE Xiang, CHU Jian, XIAO Yang. Dynamic responses of calcareous foundation reinforced by microbially induced calcite precipitation[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(6): 1303-1313. DOI: 10.11779/CJGE20220455
Citation: XIAO Peng, LIU Hanlong, SHI Jinquan, HE Xiang, CHU Jian, XIAO Yang. Dynamic responses of calcareous foundation reinforced by microbially induced calcite precipitation[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(6): 1303-1313. DOI: 10.11779/CJGE20220455

微生物加固钙质砂地基动力响应特性研究

Dynamic responses of calcareous foundation reinforced by microbially induced calcite precipitation

  • 摘要: 微生物加固技术是一种有效提高土体强度、抑制土体发生液化破坏的绿色环保加固技术。采用温控微生物加固法对南海钙质砂地基模型进行微生物加固处理,并开展了一系列模型振动台试验研究,系统讨论了微生物加固程度和土体深度对微生物加固钙质砂地基的动应力应变关系、剪切模量、剪切波速以及动强度等动力特性的影响。试验研究表明微生物加固对钙质砂地基的动力学特性影响十分显著,具体表现在:随着微生物加固程度的提高,动剪应变显著降低,滞回圈骨干曲线的斜率逐渐增大,滞回圈面积和土体能量的耗散逐渐减小;动剪切模量随着加固程度的提高而增大,但增大幅度逐渐降低;深部土体的剪切模量衰减要高于上部土体;剪切波速值随着微生物加固程度的提高而显著提高,振动后的土体剪切波速值要高于振动前。动三轴试验获得的统一动强度方程,通过折减系数进行修正处理,可在一定程度上模拟振动台试验所获得的微生物加固钙质砂动强度发展规律。

     

    Abstract: The microbially induced calcite precipitation (MICP) is a green and ecofriendly technique to efficiently improve soil strength and mitigate liquefaction potential of soil. In this study, the temperature-controlled MICP method is used to reinforce the foundation model made with the calcareous sand from the South China Sea. A series of shaking table tests are performed to investigate the effects of biocementation level and soil depth on the dynamic stress-strain relationship, shear modulus, shear wave velocity and dynamic strength of the MICP-treated calcareous sand foundation. The test results show that the MICP can affect the dynamic response of the calcareous sand foundation significantly, indicating that with the increase of the biotreatment level, the dynamic shear strain decreases significantly; the area of stress-strain hysteresis ring and the energy dissipation decrease; the dynamic shear modulus increases with the decrease of increment amplitude; the shear modulus degradation at a larger depth is higher than that at a lower depth. The shear wave velocity increases with the biocementation level and becomes higher after shaking. The dynamic strength equation for the biotreated soil models from the triaxial cyclic loading tests, multiplying a reduction coefficient, can be used to simulate the dynamic soil strength of the MICP-treated calcareous sand foundation in the shaking table tests.

     

/

返回文章
返回