• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
倪晓逸, 张路, 樊恒辉, 杨秀娟, 孟敏强, 赵彦军. 原位热力加固分散土的影响因素及其作用机理研究[J]. 岩土工程学报, 2023, 45(6): 1240-1249. DOI: 10.11779/CJGE20220280
引用本文: 倪晓逸, 张路, 樊恒辉, 杨秀娟, 孟敏强, 赵彦军. 原位热力加固分散土的影响因素及其作用机理研究[J]. 岩土工程学报, 2023, 45(6): 1240-1249. DOI: 10.11779/CJGE20220280
NI Xiaoyi, ZHANG Lu, FAN Henghui, YANG Xiujuan, MENG Minqiang, ZHAO Yanjun. Influencing factors and action mechanism of in-situ thermal reinforcement of dispersive soil[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(6): 1240-1249. DOI: 10.11779/CJGE20220280
Citation: NI Xiaoyi, ZHANG Lu, FAN Henghui, YANG Xiujuan, MENG Minqiang, ZHAO Yanjun. Influencing factors and action mechanism of in-situ thermal reinforcement of dispersive soil[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(6): 1240-1249. DOI: 10.11779/CJGE20220280

原位热力加固分散土的影响因素及其作用机理研究

Influencing factors and action mechanism of in-situ thermal reinforcement of dispersive soil

  • 摘要: 分散土是一种水敏性特殊土,常采用石灰等土壤固化材料进行改性处理,但是对于边坡工程,由于改性处理的施工工艺复杂,使得改性成本较高且效果往往达不到设计要求。通过泥球、碎块、针孔、双相对质量密度计等分散性判别试验以及微观结构检测、X射线衍射、红外光谱分析等微观试验,研究了原位热力加固分散土的影响因素及其作用机理。试验结果表明,温度、加热时间、压实度对热力加固分散土具有显著的影响。随着温度的升高、加热时间的延长、压实度的增加,分散土的分散性逐步减弱,直至消除。加热温度低于200℃时,分散土的分散性虽然减弱,但具有可逆性;高于200℃以上时,分散土彻底失去分散性,且具有不可逆性。分散土经过高温处理后,通过颗粒失水凝聚、盐矿物形变胶结等作用,使得颗粒团聚结构增强,水溶性离子溶出量减少,土体碱性降低,双电层厚度减小,进而土颗粒间的引力大于斥力,分散性减弱甚至消失。研究结果表明,原位热力加固技术是一项很有前景的特殊土边坡稳定处置技术。

     

    Abstract: The dispersive soil is a kind of special water sensitive soil, which is often modified with lime and other soil solidification materials. However, for slope engineering, due to the complex construction process of modification treatment, the cost is high and the effects often fail to meet the design requirements. The influencing factors and action mechanism of in-situ thermal reinforcement of dispersive soil are studied through the dispersion discrimination tests such as mud ball, fragment, pinhole and double-hydrometer, as well as the micro tests such as microstructure detection, X-ray diffraction and infrared spectrum analysis. The test results show that the temperature, heating time and degree of compactness have significant effects on the thermal reinforcement of the dispersive soil. With the rise of the temperature, the extension of the heating time and the increase of the compactness, the dispersibility of the dispersive soil decreases gradually until it is eliminated. When the heating temperature is lower than 200℃, the dispersity of the dispersive soil is weakened, but it is reversible. When the temperature is higher than 200℃, the dispersibility of the dispersive soil is completely lost and irreversible. After high temperature treatment, through the condensation of dehydrated particles and the deformation and cementation of salt minerals, the particle agglomeration structure is enhanced, the dissolution of water-soluble ions is reduced, the soil alkalinity is reduced, and the thickness of electric double-layer is reduced. Then, the gravity between soil particles is greater than the repulsion, and the dispersion is weakened or even disappears. This study indicates that the in-situ thermal reinforcement technology is a promising technology for the stability of problematic soil slopes.

     

/

返回文章
返回