• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
李典庆, 丁少林, 曹子君, 陶睿. 土水特征曲线试验单阶段贝叶斯优化设计方法[J]. 岩土工程学报, 2023, 45(6): 1212-1221. DOI: 10.11779/CJGE20220263
引用本文: 李典庆, 丁少林, 曹子君, 陶睿. 土水特征曲线试验单阶段贝叶斯优化设计方法[J]. 岩土工程学报, 2023, 45(6): 1212-1221. DOI: 10.11779/CJGE20220263
LI Dianqing, DING Shaolin, CAO Zijun, TAO Rui. One-stage Bayesian experimental design optimization for measuring soil-water characteristic curve[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(6): 1212-1221. DOI: 10.11779/CJGE20220263
Citation: LI Dianqing, DING Shaolin, CAO Zijun, TAO Rui. One-stage Bayesian experimental design optimization for measuring soil-water characteristic curve[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(6): 1212-1221. DOI: 10.11779/CJGE20220263

土水特征曲线试验单阶段贝叶斯优化设计方法

One-stage Bayesian experimental design optimization for measuring soil-water characteristic curve

  • 摘要: 直接测量土水特征曲线(SWCC)十分耗时。因此,SWCC试验通常只能获得有限的试验数据,基于有限数据估计SWCC不可避免地存在不确定性。因此,合理地确定试验方案(即指定SWCC测点控制变量的值),以提高试验数据的价值,减少所估计SWCC的不确定性十分重要。基于SWCC模型参数先验信息和试验仪器信息,提出了一种SWCC试验单阶段贝叶斯优化设计(OBEDO)方法。首先,所提方法通过离散试验控制变量(比如基质吸力)生成试验方案设计空间;设计空间中的候选试验方案由控制点及附加点构成,其作用分别为控制SWCC的主要趋势和降低SWCC的不确定性。然后,采用期望效用量化候选试验方案对应数据的价值,并利用子集模拟优化(SSO)方法搜索具有最大期望效用的候选试验方案。最后选取具有最大期望效用的候选试验方案为最优试验设计方案。通过一个SWCC试验设计实例说明了所提方法的有效性。结果表明,所提方法可为考虑不确定性条件下的SWCC试验设计提供一个合理的工具。

     

    Abstract: The direct measurements of soil-water characteristic curve (SWCC) are often costly and time-consuming. Therefore, only a limited number of test data can be obtained from a single SWCC test, based on which the estimated SWCC inevitably produces uncertainty. It is reasonable to select the experimental scheme (i.e., specify the values of the control variables at measuring points) in order to improve the expected value of information of the measurement data for reducing the uncertainty in the estimated SWCC. A one-stage Bayesian experimental design optimization (OBEDO) approach is developed for SWCC testing exploiting prior knowledge and information of testing apparatus. Discretization of control variables (e.g., matric suction) is used to generate the design space of the candidate experimental scheme, which is specified by the initial measuring points and the additional measuring points to control the general trajectory of SWCC and further reduce the uncertainty in SWCC, respectively. The value of data corresponding to the experimental scheme is quantified by the expected utility. The candidate experimental scheme with the maximum expected utility is identified using the subset simulation optimization (SSO) and treated as the optimal experimental design scheme. The proposed approach is illustrated using an experimental design example. The results show that it provides a rational tool to determine the optimal experiment scheme for SWCC testing considering the uncertainty of soil.

     

/

返回文章
返回