Abstract:
Based on the excavation at Jurong Station of Nanjing-Jurong Intercity Railroad, the stress and deformation characteristics of the supporting structures during the construction of the asymmetrically-loaded excavation in hard soil layer are investigated through the in-site monitoring and numerical simulation methods. The results show that the retaining piles of the asymmetrically-loaded excavation in the hard soil at both sides are deformed to the inner side of the excavation, and the asymmetrical-load increases the displacement of the loading-side piles meanwhile suppresses the displacement of the unloading-side piles. The maximum horizontal displacement of the piles at the loading-side appears at the pile top, which increases exponentially with the decrease of the ratio of the distance of load to the depth of the excavation. When the loading distance is less than the depth of the excavation, the load has a significant effect on the deformation of the loading-side piles. The existence of the load significantly increases the peak bending moment of the loading-side retaining piles, but has almost no effect on the bending moment of unloading-side piles. In order to control the risks of excavation, the retaining piles at the loading side of excavation in the hard soil should be enhanced.