• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
赵腾远, 宋超, 何欢. 小样本条件下江苏软土路基回弹模量的贝叶斯估计——基于静力触探数据与高斯过程回归的建模分析[J]. 岩土工程学报, 2021, 43(S2): 137-141. DOI: 10.11779/CJGE2021S2033
引用本文: 赵腾远, 宋超, 何欢. 小样本条件下江苏软土路基回弹模量的贝叶斯估计——基于静力触探数据与高斯过程回归的建模分析[J]. 岩土工程学报, 2021, 43(S2): 137-141. DOI: 10.11779/CJGE2021S2033
ZHAO Teng-yuan, SONG Chao, HE Huan. Bayesian estimation of resilient modulus of Jiangsu soft soils from sparse data—Gaussian process regression and cone penetration test data-based modelling and analysis[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(S2): 137-141. DOI: 10.11779/CJGE2021S2033
Citation: ZHAO Teng-yuan, SONG Chao, HE Huan. Bayesian estimation of resilient modulus of Jiangsu soft soils from sparse data—Gaussian process regression and cone penetration test data-based modelling and analysis[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(S2): 137-141. DOI: 10.11779/CJGE2021S2033

小样本条件下江苏软土路基回弹模量的贝叶斯估计——基于静力触探数据与高斯过程回归的建模分析

Bayesian estimation of resilient modulus of Jiangsu soft soils from sparse data—Gaussian process regression and cone penetration test data-based modelling and analysis

  • 摘要: 利用已有的江苏软土路基的土体参数数据集,构建了基于高斯过程回归的软土回弹模量数学模型。该模型在给定江苏软土路基静力触探试验数据(如锥尖阻力、侧摩阻力)以及软土含水率、干重度条件下,可以合理地预测江苏软土路基的回弹模量。由于该模型由贝叶斯框架出发,因此可以同时确定模型预测的不确定性。与传统的机器学习方法相比,该模型具有较强的解译性,能够准确地反映出回弹模量与不同土体参数间的依赖关系强弱。此外,该模型对训练数据的依赖性较弱,在较少(如30个左右)数据的情况下即可得到较为良好的训练效果以及泛化效果。该方法的有效性、高效性以及鲁棒性得到了验证,能为江苏软土路基回弹模量的预测提供新的思路。

     

    Abstract: A Gaussian process regression (GPR)-based model for predicting the resilient modulus of Jiangsu soft soils is developed based on the complied database for Jiangsu soft soils in literatures. The model takes the cone penetration test (CPT) data (e.g., tip resistance qc data, and sleeve friction fs data), water content and dry unit weight of soft soils as the input, while provides the predicted resilient modulus as well as quantified uncertainty as the output. By comparing with some conventional machine learning methods, the GPR model can reasonably reflect the correlation between the resilient modulus and the other geotechnical parameters of Jiangsu soft soils. Besides, the GPR model can achieve good performance even when the number of the training dataset is small, which is validated in this study in terms of effectiveness, efficiency and robustness. The GPR method can be considered as a new way for the probabilistic and non-parametric estimation of the resilient modulus of Jiangsu soils.

     

/

返回文章
返回