• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
赵泽宁, 段伟, 蔡国军, 刘松玉, 常建新, 冯华磊. 基于机器学习CPTU智能算法的黏性土应力历史评价[J]. 岩土工程学报, 2021, 43(S2): 104-107. DOI: 10.11779/CJGE2021S2025
引用本文: 赵泽宁, 段伟, 蔡国军, 刘松玉, 常建新, 冯华磊. 基于机器学习CPTU智能算法的黏性土应力历史评价[J]. 岩土工程学报, 2021, 43(S2): 104-107. DOI: 10.11779/CJGE2021S2025
ZHAO Ze-ning, DUAN Wei, CAI Guo-jun, LIU Song-yu, CHANG Jian-xin, FENG Hua-lei. Evaluation of stress history of clays based on intelligent CPTU machine learning algorithm[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(S2): 104-107. DOI: 10.11779/CJGE2021S2025
Citation: ZHAO Ze-ning, DUAN Wei, CAI Guo-jun, LIU Song-yu, CHANG Jian-xin, FENG Hua-lei. Evaluation of stress history of clays based on intelligent CPTU machine learning algorithm[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(S2): 104-107. DOI: 10.11779/CJGE2021S2025

基于机器学习CPTU智能算法的黏性土应力历史评价

Evaluation of stress history of clays based on intelligent CPTU machine learning algorithm

  • 摘要: 土体应力历史是衡量土体稳定性、变形特性的重要指标,常采用超固结比(OCR)表示。基于江苏黏性土孔压静力触探(CPTU)原位测试数据集,以室内固结试验结果为参考值,采用多元自适应回归样条(MARS)和自适应模糊神经网络(ANFIS)智能算法对黏性土应力历史进行评价,并将预测结果与室内试验结果和CPTU经验关系式估计值进行对比,最后进行了参数敏感性分析。结果表明:MARS模型和ANFIS模型均能够准确地预测黏性土的OCR值,且准确度均明显高于传统CPTU经验关系式;相比而言,MARS模型效果更佳。工程实践中,建议采用CPTU原始测试参数(qtfsu2)作为机器学习输入变量。MARS模型敏感性分析结果与理论研究结果一致,进一步验证了MARS模型的可靠性。提出的智能CPTU模型可以准确地预测黏性土OCR,指导工程实践。

     

    Abstract: The stress history is an important index to measure the stability and deformation characteristics of soils, which is often expressed by the overconsolidation ratio (OCR). Based on the CPTU dataset of Jiangsu Province, and taking the laboratory oedometer test data as the reference values, the stress history is evaluated using the multiple adaptive regression splines (MARS) and adaptive fuzzy neural network (ANFIS) algorithms. Then, the results are compared with the reference values and the estimated results of the traditional CPTU method. Finally, the sensitivity analysis is carried out to study the effect of input parameters. The results show that both the MARS model and the ANFIS model can accurately predict the OCR, and the performance is significantly better than that of the traditional CPTU model. Moreover, the MARS model performs best among all the models. In engineering practice, the original CPTU test parameters (qt, fs and u2) are recommended as the input variables. The results of sensitivity analysis of the MARS model are consistent with those of theoretical analysis, which further proves the reliability of the MARS model. The proposed intelligent models can more accurately predict the OCR of clays and guide engineering practice.

     

/

返回文章
返回