• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
于永堂, 郑建国, 张继文, 黄鑫, 徐文涛. 基于卡尔曼滤波与指数平滑法融合模型的沉降预测新方法[J]. 岩土工程学报, 2021, 43(S1): 127-131. DOI: 10.11779/CJGE2021S1023
引用本文: 于永堂, 郑建国, 张继文, 黄鑫, 徐文涛. 基于卡尔曼滤波与指数平滑法融合模型的沉降预测新方法[J]. 岩土工程学报, 2021, 43(S1): 127-131. DOI: 10.11779/CJGE2021S1023
YU Yong-tang, ZHENG Jian-guo, ZHANG Ji-wen, HUANG Xin, XU Wen-tao. Prediction of settlement based on fusion model of Kalman filter and exponential smoothing algorithm[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(S1): 127-131. DOI: 10.11779/CJGE2021S1023
Citation: YU Yong-tang, ZHENG Jian-guo, ZHANG Ji-wen, HUANG Xin, XU Wen-tao. Prediction of settlement based on fusion model of Kalman filter and exponential smoothing algorithm[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(S1): 127-131. DOI: 10.11779/CJGE2021S1023

基于卡尔曼滤波与指数平滑法融合模型的沉降预测新方法

Prediction of settlement based on fusion model of Kalman filter and exponential smoothing algorithm

  • 摘要: 针对含噪声沉降监测数据波动性大、离散性强,难以直接用于沉降趋势预测和稳定性状态评估,以及传统预测模型参数无法随实测数据更新而可变自适应等问题,提出了基于卡尔曼滤波与指数平滑法融合模型(简称KF-ES融合模型)的沉降预测新方法。该方法的思路是:首先,运用卡尔曼滤波对原始沉降数据进行三次滤波降噪处理;然后,将卡尔曼滤波一次、二次和三次处理值对应替换指数平滑法一次、二次、三次平滑值,卡尔曼滤波增益系数替换三次指数平滑系数;最后,采用替换后的平滑值和平滑系数计算三次指数平滑法的模型参数,建立预测模型并外推预测。实例检验结果表明,KFES融合模型能显著减弱沉降数据中含有的随机噪声干扰,具有自适应性强、预测实时性好等优点,适合短期动态预测。

     

    Abstract: It is difficult to predict the settlement trend and to assess the stability of the settlement due to the large fluctuation and strong discreteness of the settlement monitoring data with noise, and the parameters of the conventional prediction models cannot be updated with the latest data.In this study, a prediction method based on the fusion model of Kalman filter(KF)and exponential smoothing(ES)algorithm is proposed.The idea of this method is as follows: Firstly, the Kalman filter is used to process the original settlement data for three times of filtering and noise reduction.Secondly, the first, second and third processing values of the Kalman filter are replaced by the smoothing values of the same processing times of the exponential smoothing method, and the gain coefficient of Kalman filter is replaced by the smoothing coefficient of the third exponential smoothing method.Finally, the parameters of the cubic exponential smoothing method are calculated by using the replaced smoothing values and smoothing coefficients, and the prediction model is established and extrapolated.The test results show that the KF-ES fusion model can significantly reduce the random noise interference in settlement data and has the advantages of strong adaptability, good real-time prediction, and it is suitable for short-term dynamic prediction.

     

/

返回文章
返回