• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
闫浩, 张吉雄, 周楠, 时培涛. 基于DA-DE-SVM智能模型的煤岩体SC-CO2压裂效果预测[J]. 岩土工程学报, 2023, 45(2): 362-368. DOI: 10.11779/CJGE20211287
引用本文: 闫浩, 张吉雄, 周楠, 时培涛. 基于DA-DE-SVM智能模型的煤岩体SC-CO2压裂效果预测[J]. 岩土工程学报, 2023, 45(2): 362-368. DOI: 10.11779/CJGE20211287
YAN Hao, ZHANG Jixiong, ZHOU Nan, SHI Peitao. Prediction of SC-CO2 fracturing effects of coal and rock mass based on DA-DE-SVM intelligent model[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(2): 362-368. DOI: 10.11779/CJGE20211287
Citation: YAN Hao, ZHANG Jixiong, ZHOU Nan, SHI Peitao. Prediction of SC-CO2 fracturing effects of coal and rock mass based on DA-DE-SVM intelligent model[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(2): 362-368. DOI: 10.11779/CJGE20211287

基于DA-DE-SVM智能模型的煤岩体SC-CO2压裂效果预测

Prediction of SC-CO2 fracturing effects of coal and rock mass based on DA-DE-SVM intelligent model

  • 摘要: 煤岩体压裂效果是超临界CO2(SC-CO2)压裂工程设计的主要依据。为准确预测煤岩体SC-CO2压裂效果,基于多孔相向裂缝动态扩展模拟,筛选确定影响煤岩体SC-CO2压裂效果的6个地质因素和4个施工因素,提出了一种集成支持向量机(SVM)、蜻蜓算法(DA)、差分进化算法(DE)的混合人工智能模型,利用支持向量机构建SC-CO2压裂效果与其影响因素之间的关系,并利用蜻蜓算法、差分进化算法联合优化支持向量机的超参数。以相关系数、均方根误差、平均绝对误差为评价指标对混合人工智能模型性能进行了评估,并采用MIV方法对模型输入变量进行了敏感性分析,结果表明:本文提出的DA-DE-SVM智能模型能很好预测煤岩体SC-CO2压裂效果,其训练集的R值为0.9572,测试集的R值为0.9316。SC-CO2压裂效果影响因素的重要程度从高到低依次为:相邻压裂钻孔水平距离 > 垂直地应力 > 压裂液注入速率 > 相邻压裂钻孔垂直距离 > 煤体抗拉强度 > 水平地应力 > 压裂液温度 > 煤体渗透系数 > 煤体初始孔隙压力 > 煤体弹性模量。研究成果可为SC-CO2压裂工程参数优化设计及工程应用提供重要指导。

     

    Abstract: The fracturing effect of coal and rock mass is the main basis for the design of supercritical CO2 (SC-CO2) fracturing projects. In order to accurately predict the effects of SC-CO2 fracturing in coal and rock mass, based on the dynamic propagation characteristics between two opposite cracks originating from the adjacent fracturing boreholes, six geological factors and four construction factors that affect the SC-CO2 fracturing effects in coal and rock mass are screened and determined. A hybrid artificial intelligence model that integrates the support vector machine (SVM), dragonfly algorithm (DA) and differential evolution algorithm (DE) is proposed、the relationship between the SC-CO2 fracturing effects and the influencing factors is constructed using the SVM, the hyper-parameters of SVM are optimized using the DA and the differential evolution algorithm, the performance of the hybrid artificial intelligence model is evaluated using the correlation coefficient, root mean square error and average absolute error as the evaluation indices, and the sensitivity of the model input variables is analyzed by the MIV method. The results show that the proposed DA-DE-SVM prediction model can predict the effects of SC-CO2 fracturing well of coal and rock mass. The R value of the training set is 0.9572 and that of the testing set is 0.9316. The importance of factors affecting SC-CO2 fracturing effects is from high to low: horizontal distance between adjacent fracturing boreholes > vertical stress > fracturing fluid injection rate > vertical distance between adjacent fracturing boreholes > tensile strength > horizontal stress > fracturing fluid temperature > coal permeability coefficient > initial pore pressure > coal elastic modulus. The research results may provide important guidance for the parameter optimization design and engineering application of the SC-CO2 fracturing technology.

     

/

返回文章
返回