• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
张紫杉, 王述红, 王鹏宇, 王存根. 岩坡坡面裂隙网络智能识别与参数提取[J]. 岩土工程学报, 2021, 43(12): 2240-2248. DOI: 10.11779/CJGE202112010
引用本文: 张紫杉, 王述红, 王鹏宇, 王存根. 岩坡坡面裂隙网络智能识别与参数提取[J]. 岩土工程学报, 2021, 43(12): 2240-2248. DOI: 10.11779/CJGE202112010
ZHANG Zi-shan, WANG Shu-hong, WANG Peng-yu, WANG Cun-gen. Intelligent identification and extraction of geometric parameters for surface fracture networks of rocky slopes[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(12): 2240-2248. DOI: 10.11779/CJGE202112010
Citation: ZHANG Zi-shan, WANG Shu-hong, WANG Peng-yu, WANG Cun-gen. Intelligent identification and extraction of geometric parameters for surface fracture networks of rocky slopes[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(12): 2240-2248. DOI: 10.11779/CJGE202112010

岩坡坡面裂隙网络智能识别与参数提取

Intelligent identification and extraction of geometric parameters for surface fracture networks of rocky slopes

  • 摘要: 作为高陡岩质边坡建模的重要先决条件,快速精准地进行岩坡表面裂隙网络的参数化建模近年来成为了研究的热点。研究引入深度学习技术与智能算法聚类思想,提出了一种结合无人机摄影技术的高陡边坡坡面裂隙网络智能识别与几何参数提取的方法。采用空洞卷积算法对传统U-net分割识别网络进行改进,并运用GMM-EM算法对识别出的二值图中的裂隙进行聚类,最后引入RANSAC算法实现裂隙面的几何参数自动提取并运用DICE相似系数对识别结果进行对比分析。结果表明,该方法裂隙提取的准确率高于97%,相较于传统算法有所提高。同时,将该方法应用于云南鲁奎山铁矿边坡工程,实现了高陡岩坡表面裂隙信息的快速采集,为后续高陡岩质节理边坡建模提供了必要的技术支撑。

     

    Abstract: As an important prerequisite for modeling the high steep rocky slope, a fast and accurate parametric modeling for fracture networks of rocky slopes has become a popular research topic in recent years. Focusing on the deep learning and intelligent algorithmic clustering method, a UAV photography-based joint detection technique is proposed to identify and extract the geometric parameters of the fracture network on high steep slope surface. A dilated convolution is adopted to improve the traditional U-net segmentation network, and a GMM-EM algorithm is employed to cluster the segmented fractures on the binary images. Finally, a RANSAC algorithm is used to perform the extraction process of geometric parameter of the fracture network. Seen from the comparative results of DICE similar index, the accuracy of segmentation recognition is more than 97%, which shows that the proposed fracture extraction technique is more efficient and accurate than other traditional algorithms. The improved technique is applied to the slope of Lukuishan open pit, implementing the in-site rapid data extraction of fracture networks on the slope surface. This technique may provide an effective technical support for the refined modeling of high and steep rocky slopes.

     

/

返回文章
返回