• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
费锁柱, 谭晓慧, 董小乐, 查甫生, 许龙. 基于土体孔径分布的土水特征曲线预测[J]. 岩土工程学报, 2021, 43(9): 1691-1699. DOI: 10.11779/CJGE202109014
引用本文: 费锁柱, 谭晓慧, 董小乐, 查甫生, 许龙. 基于土体孔径分布的土水特征曲线预测[J]. 岩土工程学报, 2021, 43(9): 1691-1699. DOI: 10.11779/CJGE202109014
FEI Suo-zhu, TAN Xiao-hui, DONG Xiao-le, ZHA Fu-sheng, XU Long. Prediction of soil-water characteristic curve based on pore size distribution of soils[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(9): 1691-1699. DOI: 10.11779/CJGE202109014
Citation: FEI Suo-zhu, TAN Xiao-hui, DONG Xiao-le, ZHA Fu-sheng, XU Long. Prediction of soil-water characteristic curve based on pore size distribution of soils[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(9): 1691-1699. DOI: 10.11779/CJGE202109014

基于土体孔径分布的土水特征曲线预测

Prediction of soil-water characteristic curve based on pore size distribution of soils

  • 摘要: 土水特征曲线(SWCC)是描述非饱和土的吸力与饱和度或含水率关系的一条重要曲线,是分析非饱和土的强度、变形及渗流的重要基础。室内直接或间接测量土体的吸力非常耗时。为了快速准确获取非饱和土体的SWCC,提出了基于土体的孔径分布(PSD)预测SWCC的改进方法。该方法采用压汞试验(MIP)测量土体的PSD,采用滤纸法测量土样的一个吸力值及其对应的饱和度,再根据该点的试验结果对MIP试验测得的土体孔隙体积进行校正,并采用校正后的孔隙体积来计算不同吸力条件下土体的饱和度。该方法可以克服MIP试验测得的孔隙体积偏小的问题。通过对9组土样校正前后预测SWCC与实测SWCC的对比分析,表明了该方法可以较为准确地预测非饱和土体的SWCC。在此基础上,可以方便快捷地得到多组土体的SWCC拟合参数及其概率统计特征。

     

    Abstract: The soil-water characteristic curve (SWCC) is an important curve describing the relationship between the suction of unsaturated soils and the saturation or water content, and is an important basis for analyzing the strength, deformation and seepage of unsaturated soils. It is very time-consuming to measure soil suction directly or indirectly indoors. In order to quickly and accurately obtain the SWCC of unsaturated soils, an improved method for predicting SWCC based on the pore size distribution (PSD) of soils is proposed. This method uses the mercury intrusion porosimetry (MIP) to measure the PSD of soils, and the filter paper method is used to measure a suction value of soil samples and its corresponding saturation. Then according to the test results at this point, the pore volume of soils measured by the MIP tests is corrected, and the pore volume after correction is used to calculate the saturation of soils under different suction conditions. This method can overcome the problem of small pore volume measured by the MIP tests. The comparative analysis of the predicted and measured SWCCs before and after the correction of 9 groups of soil samples shows that the proposed method can predict the SWCC of unsaturated soils more accurately. On this basis, the fitting parameters of SWCC and their probability statistical characteristics of multiple groups of soils can be obtained conveniently and quickly.

     

/

返回文章
返回