压实宽级配黏土与刚性面结合带抗渗特性研究
Impermeability characteristics of junctional zone between compacted broadly graded clayey soil and hard surface
-
摘要: 研发了土料与刚性面结合带在相互正交、独立可控的压应力、剪切变形和水力比降作用下抗渗性能试验的大型和中型设备,最大剪切变形量值大于1 m。对压实天然宽级配黏土开展了结合带抗渗特性试验研究,发现了试样渗透系数随剪切变形突然增大后逐步减小并稳定的变化规律,剪切变形启停历史会弱化结合带渗透系数随剪切变形启动而突然增大的现象,初始密度高、应力高、试样尺寸大的土样渗透系数更低。考虑结合带导水系数与初始值的比值和试样渗透系数与初始值的比值之间的关系,分析渗透系数剪切后达峰值时结合带厚度在0.075~1.0 mm之间,结合带厚度随正应力减小、随试样尺寸增大而增厚。提出改进的黏土颗粒不规则形状集簇模型,通过组构变化较好解释了剪切过程中渗透性持续演化的机理,也支撑了结合带厚度的分析结论。Abstract: Large-scale and medium-scale test equipments for impermeability characteristics of junctional zone between soil and hard surface are developed. The mutually orthogonal compressive stress, shear deformation and hydraulic gradient of the junctional zone between the soil and the rigid surface are controllable independently. The maximum shear deformation is greater than 1 m. The experimental studies on a compacted natural broadly graded clayey soil are carried out. The variation law of the permeability coefficient of the samples is discovered, that the permeability coefficient decreases gradually and then becomes stable after the sudden increase along with the start of the shear deformation. The history of shear deformation may weaken the phenomenon of the sudden increase of the permeability coefficient after the start of shear deformation. The permeability coefficient of soil samples with higher initial density, higher stress and larger external size is lower. Based on the corresponding relationship between the ratio of water conductivity coefficient of the junctional zone to its initial value and the ratio of permeability coefficient of the sample to its initial value, the possible thickness of the junctional zone considered to be between 0.075 mm and 1.0 mm is analyzed when the peak value of permeability coefficient is achieved. A revised model for clay particle clusters with irregular shape is proposed. The continuous change mechanism of permeability during shear deformation can be explained by fabric adjustment. The conjecture of the thickness of the junctional zone is also supported.