• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
饶平平, 吴健, 崔纪飞, 赵琳学. 裂缝边坡三维极限上限拓展分析[J]. 岩土工程学报, 2021, 43(9): 1612-1620. DOI: 10.11779/CJGE202109005
引用本文: 饶平平, 吴健, 崔纪飞, 赵琳学. 裂缝边坡三维极限上限拓展分析[J]. 岩土工程学报, 2021, 43(9): 1612-1620. DOI: 10.11779/CJGE202109005
RAO Ping-ping, WU Jian, CUI Ji-fei, ZHAO Lin-xue. Extended three-dimensional analysis of cracked slopes using upper-bound limit method[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(9): 1612-1620. DOI: 10.11779/CJGE202109005
Citation: RAO Ping-ping, WU Jian, CUI Ji-fei, ZHAO Lin-xue. Extended three-dimensional analysis of cracked slopes using upper-bound limit method[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(9): 1612-1620. DOI: 10.11779/CJGE202109005

裂缝边坡三维极限上限拓展分析

Extended three-dimensional analysis of cracked slopes using upper-bound limit method

  • 摘要: 裂缝的存在会降低边坡稳定性,而在边坡宽度受到限制时三维效应更加显著,因此有必要对裂缝边坡稳定性进行评估。针对裂缝边坡三维稳定性研究,基于极限分析上限定理,在三维破坏机构中引入一条垂直张拉裂缝,并引进机构参数拓展裂缝边坡三维破坏模式,包括坡面破坏和坡底破坏,建立能量平衡方程并通过优化算法求解裂缝边坡稳定系数上限解。根据g-line图像法绘制裂缝边坡稳定性图表以便读取安全系数。分析了边坡宽高比、坡角以及土体内摩擦角对裂缝边坡破坏模式和裂缝深度及位置的影响规律。结果表明:对于确定的边坡几何形态以及土体参数,存在最小边坡宽高比B/H*,当边坡宽高比小于B/H*,边坡发生坡面破坏且坡顶裂缝的影响可以忽略;内摩擦角φ小于5°时,边坡发生坡底破坏,而对于裂缝边坡,仅在φ=1°左右发生坡底破坏;随着边坡宽高比的增大,裂缝深度逐渐增加,裂缝位置逐渐远离坡肩,但对于坡角为75°的边坡裂缝深度先增大后减小。

     

    Abstract: The existence of cracks will reduce the stability of a slope and the three-dimensional effect is more significant when its width is limited. Therefore, it is necessary to evaluate the stability of cracked slopes. In order to study the three-dimensional stability of cracked slopes, based on the upper-bound theorem of limit analysis, a vertical tensile crack is introduced into the three-dimensional failure mechanism, and the mechanism parameters are introduced to extend the three-dimensional failure mode of slopes, including face failure and base failure. The energy balance equation is established, and the upper bounds of stability number of cracked slopes are obtained by the optimization algorithm. The stability charts of cracked slopes are established based on the g-line graphical method to read the factor of safety conveniently. The influences of slope width-to-height ratio, slope angle and internal friction angle of soils on the failure mechanism of cracked slopes and the crack depth and location are analyzed. The results show that for the specific slope geometry and soil parameters, there is a minimum slope width B/H*. When the slope width is less than B/H*, the failure surface passes above the slope toe, and the influences of the crack on the upper surface of the slope can be ignored. When the internal friction angle φ is less than 5°, the failure surface passes below the slope toe; for the cracked slope, only when φ=1°, failure surface passes below the slope. As the width of the slope increases, the crack depth gradually increases, and the crack location gradually moves away from the slope crest, while the crack depth of the slope with inclination 75° increases first and then decreases.

     

/

返回文章
返回