• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
闫长斌, 汪鹤健, 周建军, 杨风威, 彭万军. 基于Bootstrap-SVR-ANN算法的TBM施工速度预测[J]. 岩土工程学报, 2021, 43(6): 1078-1087. DOI: 10.11779/CJGE202106011
引用本文: 闫长斌, 汪鹤健, 周建军, 杨风威, 彭万军. 基于Bootstrap-SVR-ANN算法的TBM施工速度预测[J]. 岩土工程学报, 2021, 43(6): 1078-1087. DOI: 10.11779/CJGE202106011
YAN Chang-bin, WANG He-jian, ZHOU Jian-jun, YANG Feng-wei, PENG Wan-jun. Prediction of TBM advance rate based on Bootstrap method and SVR-ANN algorithm[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(6): 1078-1087. DOI: 10.11779/CJGE202106011
Citation: YAN Chang-bin, WANG He-jian, ZHOU Jian-jun, YANG Feng-wei, PENG Wan-jun. Prediction of TBM advance rate based on Bootstrap method and SVR-ANN algorithm[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(6): 1078-1087. DOI: 10.11779/CJGE202106011

基于Bootstrap-SVR-ANN算法的TBM施工速度预测

Prediction of TBM advance rate based on Bootstrap method and SVR-ANN algorithm

  • 摘要: 合理评价预测施工速度关乎隧道TBM施工的成败与效益。现有的TBM施工速度预测模型多利用岩体参数和掘进参数预测瞬时/平均施工速度,对掘进过程中的不确定性和施工风险考虑不足。基于此,引入区间预测方法,提出一种基于Bootstrap-SVR-ANN算法的TBM施工速度预测模型。以兰州水源地建设工程输水隧洞双护盾TBM施工为工程依托,分析了单一性输入参数的不足,指出了选择岩体质量分级指标(RMR)、TBM工作条件等级(TWCR)两个综合性参数的合理性,并对构建的TBM施工速度区间预测模型的有效性进行了验证。研究表明,TBM施工速度区间预测模型不但具有良好的点预测效果,而且预测区间可将TBM施工速度的实测值完全包络,模型可靠性较高;模型测试集在90%,95%置信水平下的MPIW分别为9.84,11.73 m/d,随着置信水平的提高,预测区间可容纳的不确定性也不断上升;TBM掘进过程中可能的风险性与区间宽度的异常相互印证,验证了区间预测模型可以定量解释施工过程中不确定性的特点。研究成果可为TBM掘进效能预测、施工工期估算和掘进参数优化等提供科学参考。

     

    Abstract: The reasonable prediction and evaluation of advance rate is related to the success and benefit of TBM construction. The existing prediction models for TBM advance rate mostly use parameters of rock mass and TBM tunneling to predict the instantaneous/average advance rate. To solve the problem that these models do not consider the influences of uncertainty and risk during TBM tunneling process, a prediction model for TBM advance rate based on the Bootstrap method and SVR-ANN algorithm is proposed by introducing the idea of interval prediction. Based on the project of Lanzhou water sources water conveyance tunnel constructed by double-shield TBM, the shortcomings of some single input parameters are analyzed, and the rationality of two selected comprehensive parameters, namely rock mass quality classification index (RMR) and TBM working condition class (TWCR), is pointed out. In addition, the validity of the developed interval prediction model for TBM advance rate is verified. The results show that the developed interval prediction model for TBM advance rate provides relatively accurate point prediction results and constructs a clear and reliable AR prediction interval to cover the actual TBM advance rate completely. The MPIW of model test set at confidence levels of 90% and 95% is 9.84, 11.73 m/d, respectively. With the improvement of the confidence level, the uncertainty that can be contained in the prediction interval also increases. Moreover, the possible risk of TBM tunneling process and the abnormal interval width confirm each other, which verifies that the interval prediction model can quantitatively explain the characteristics of uncertainty in the construction process. The research results may provide a new idea for the forecasting of TBM tunneling efficiency, the estimation of construction schedule as well as the optimization of tunneling parameters.

     

/

返回文章
返回