不排水循环荷载条件下胶结砂土宏微观力学性质离散元模拟研究
DEM analysis of macro- and micro-mechanical behaviors of cemented sand subjected to undrained cyclic loading
-
摘要: 天然或人工胶结的存在能够提高砂土的抗液化能力,从宏微观尺度对其动力学性质进行研究具有重大意义。将已有的三维完整胶结接触模型引入到三维离散元程序中,对胶结砂土不排水循环三轴剪切试验进行三维离散元模拟,研究颗粒间胶结、循环应力比对离散元试样宏微观力学性质的影响。研究结果表明,胶结的存在能够抑制轴应变和孔压的发展,提高砂土的抗液化强度,循环应力比与液化振次之间具有指数函数关系,证实了本文离散元模拟能够反映胶结砂土的宏观动力学性质。在微观尺度上,当循环应力比较小时,胶结试样内部仅有极少量胶结发生破坏,力学配位数基本不变,外界输入功主要用于增加颗粒和胶结弹性能。对于特定胶结程度的试样,在初始液化发生之前,随循环应力比增加,试样内部胶结破坏更为剧烈,力学配位数下降速率更快,颗粒和胶结弹性能更快地趋向于0,颗粒摩擦耗能、弯转耗能、扭转耗能更快地达到最大值,而破坏胶结接触点、胶结接触点和无胶结接触点法方向的空间分布更快地趋向于各向同性性质。Abstract: Natural or artificial cementation formed between sand particles can strengthen the liquefaction resistance of sand. Hence, it is significant to investigate the dynamic behavior of cemented sand at the macro- and micro-scale. By introducing an existing three-dimensional (3-D) complete bond contact model into a 3-D distinct element method (DEM) code, a series of undrained cyclic triaxial shear tests on the cemented sand are simulated, where the effects of cementation and cyclic stress ratio are studied. The results show that the inter-particle cementation can restrain the development of axial strain and pore pressure, and increase the liquefaction resistance. In addition, there is an exponential relationship between the cyclic stress ratio and the number of cycles to trigger the initial liquefaction. These findings confirm the reliability of the DEM simulation in this study. When the value of cyclic stress ratio is relatively small, within the cemented specimen with given degree of cementation, a very small amount of bonds break, the mechanical coordination number remains almost unchanged, and the input work is mainly used to increase the elastic energy at the particle contacts and bond contacts. For the cemented sand before the initial liquefaction, as the cyclic stress ratio increases, the inter-particle bonds break more intensely, the mechanical coordination number declines faster. Likewise, as the cyclic stress ratio increases, the elastic energy at the particle and bond contacts tends to zero faster, and the dissipated energy reaches the maximum value in a shorter period of time. In addition, the contact normal orientation tends to be isotropic more rapidly.