渗漏点高度对寒区加高渠道不协调变形的影响
Influences of height of leakage point on uncoordinated deformation of heightening canals in cold areas
-
摘要: 寒区渠道由于水位和温度的周期性变化,渠基土经历“湿干冻融”循环作用,这将加剧加高渠道的不协调变形。因此,以北疆输水渠道加高改造工程为例,结合有限元计算结果分析了不同渗漏点高度对渠坡不协调变形的影响,主要结论如下:①渠坡不协调变形最显著的时间点出现在“冻”的阶段,但是并非出现在温度最低点,而是出现在温度由最低温度开始向上回升时;②当渗漏点在渠坡中点附近时,加高层引起的渠坡不协调变形最显著,渠坡与衬砌之间的漏空变形最大,且随着“湿干冻融”循环次数的增大而增大,并有逐渐趋于稳定的趋势;③渗漏点高于渠坡中点时,虽然渠坡冻胀变形增大,但是不协调变形引起的渠坡与衬砌之间的漏空变形反倒降低。渗漏点低于渠坡中点时,渠坡冻胀变形和不协调变形都较低。可见,渠坡冻胀量大并不一定意味着加高渠坡不协调变形大,渗漏点位置较低时,冻胀量越小且加高渠道的不协调变形也最小,是一种最理想的工况。Abstract: Due to the periodic changes of water supply and temperature in canals in high cold regions, the canal soils will undergo the "wetting-drying and freeze-thaw" cycles, which will aggravate the uncoordinated deformation of the heightening canals. The influences of different heights of leakage point on the uncoordinated deformation of canal slopes is analyzed by taking the heightening canal in northern Xinjiang as an example. The main conclusions are as follows: (1) The most significant uncoordinated deformation of the canal slopes occurs at the "freezing" stage, but it does not occur at the lowest temperature point, it occures when the temperature starts to rise from the lowest temperature. (2) When the leakage point is near the midpoint of the canal slopes, the uncoordinated deformation of the canal slopes caused by the addition of high rise is the most significant. The distance between the canal slope and the linings is the maximum, which increases with the increasing number of "wetting-drying and freeze-thaw" cycles to a constant value. (3) When the seepage point is higher than the midpoint of the canal slopes, the frost-heave deformation of the canal slopes increases, but the distance between the canal slopes and the linings caused by the uncoordinated deformation decreases. When the seepage point is lower than the midpoint of the canal slopes, the frost-heave deformation and the uncoordinated deformation of the canal slopes are both lower. It can be seen that a larger frost heave in the canal slopes does not necessarily mean a larger uncoordinated deformation in the heightening canals. When the leakage point is lower, the frost heave is the minimum and the uncoordinated deformation caused by heightening layer is also the minimum, which is an ideal working condition.