• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
周志军, 陈昌富, 肖水强. 可控刚性桩与排水体组合型复合地基受力与变形特性的模型试验研究[J]. 岩土工程学报, 2020, 42(12): 2308-2315. DOI: 10.11779/CJGE202012018
引用本文: 周志军, 陈昌富, 肖水强. 可控刚性桩与排水体组合型复合地基受力与变形特性的模型试验研究[J]. 岩土工程学报, 2020, 42(12): 2308-2315. DOI: 10.11779/CJGE202012018
ZHOU Zhi-jun, CHEN Chang-fu, XIAO Shui-qiang. Model tests on stress and deformation properties of composite foundation with controllable rigid piles and drainage bodies[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(12): 2308-2315. DOI: 10.11779/CJGE202012018
Citation: ZHOU Zhi-jun, CHEN Chang-fu, XIAO Shui-qiang. Model tests on stress and deformation properties of composite foundation with controllable rigid piles and drainage bodies[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(12): 2308-2315. DOI: 10.11779/CJGE202012018

可控刚性桩与排水体组合型复合地基受力与变形特性的模型试验研究

Model tests on stress and deformation properties of composite foundation with controllable rigid piles and drainage bodies

  • 摘要: 在复合地基中,桩、土的变形受诸多因素的影响,褥垫层较难协调、匹配好所有桩土之间的沉降差,往往存在桩承载过大而破坏,或桩承载过小而浪费的情况。提出一种新型复合地基—可控刚性桩与排水体组合型复合地基,该复合地基通过桩顶注浆装置来协调桩土的沉降差,使得注浆前刚性桩基本不承担上部荷载,地基土充分排水固结、提高承载力;注浆后刚性桩恢复承载作用,桩土共同承担荷载和控制沉降。通过室内模型试验研究该新型复合地基的受力与变形特性,试验结果表明:新型复合地基的沉降主要产生于注浆前,注浆后沉降量相对较小,而且,新型复合地基能有效减小不均匀沉降;桩顶盖板所分担的荷载压力在注浆前小于桩间土压力,注浆后盖板顶压力迅速增大,而桩间土压力相应减小;刚性桩的承载作用可由注浆实现人为可控。

     

    Abstract: In a composite foundation, the deformations of piles and soils are affected by many factors. The cushion is difficult to coordinate and match the differential settlement between all piles and soils. Therefore the piles often carry the excessive loads and are destroyed, or the piles bear too small loads and are wasted. A new composite foundation composed of controllable rigid piles and drainage bodies is proposed. The differential settlement between piles and soils is coordinated by the grouting device at the top of piles in the composite foundation, rigid piles hardly carry the upper loads before grouting, and the foundation soils are fully consolidated and their bearing capacity is improved. After grouting, the rigid piles begin to support the loads, and the piles and soils work together to share the loads and to control settlement. The stress and deformation properties of the composite foundation are studied through indoor model tests. The results show that the settlement of the new composite foundation mainly increases before grouting and is effectively controlled after grouting. Moreover, the new composite foundation can effectively reduce the differential settlement. The load pressure shared by the cover plate on piles is less than that shared by the soils between piles before grouting, and the pressure shared by the cover plate increases rapidly after grouting, while that by the soils between piles decreases correspondingly. The bearing capacity of rigid piles can be controlled by grouting.

     

/

返回文章
返回