• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
刘学增, 赖浩然, 桑运龙, 段俊铭, 丁爽. 不同变形条件下盾构隧道粘钢加固效果的模型试验研究[J]. 岩土工程学报, 2020, 42(11): 2115-2123. DOI: 10.11779/CJGE202011017
引用本文: 刘学增, 赖浩然, 桑运龙, 段俊铭, 丁爽. 不同变形条件下盾构隧道粘钢加固效果的模型试验研究[J]. 岩土工程学报, 2020, 42(11): 2115-2123. DOI: 10.11779/CJGE202011017
LIU Xue-zeng, LAI Hao-ran, SANG Yun-long, DUAN Jun-ming, DING Shuang. Model tests on effect of bonded steel plate reinforcement of shield tunnels under different deformation conditions[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(11): 2115-2123. DOI: 10.11779/CJGE202011017
Citation: LIU Xue-zeng, LAI Hao-ran, SANG Yun-long, DUAN Jun-ming, DING Shuang. Model tests on effect of bonded steel plate reinforcement of shield tunnels under different deformation conditions[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(11): 2115-2123. DOI: 10.11779/CJGE202011017

不同变形条件下盾构隧道粘钢加固效果的模型试验研究

Model tests on effect of bonded steel plate reinforcement of shield tunnels under different deformation conditions

  • 摘要: 由于上方堆土、邻近基坑开挖等周边工程的影响,地铁隧道结构产生较大变形已成为常见问题,粘钢加固作为控制地铁变形的常用手段,然而目前对于粘贴钢板加固效果的评价分析尚不明确。通过1∶5的室内模型试验研究了隧道不同变形条件下粘钢加固后结构的承载性能、荷载位移关系以及结构的破坏模式,分析了粘钢加固效果以及合理的加固时机。试验结果表明:①隧道结构变形分别为7.4‰D,15‰D和20‰D时(D为隧道外径)采取粘钢加固,加固后结构的破坏荷载相对原结构的破坏荷载分别增加了54.2%,49.6%和26.7%,结构失稳时的竖向收敛分别为60.78,58.74,62.15 mm,水平扩张分别为48.46,56.28,61.68 mm,说明粘钢可以提升结构承载力,但未对结构失稳时的位移量产生较大影响,从而为基于位移变化判断结构服役性能提供了依据;②结构变形10‰D至15‰D作为加固时机较为合理;③钢板与混凝土结合面的开裂与剥离是粘钢加固结构破坏的主要因素,关键部位为拱顶正弯矩区附近接头处。上述研究结论可为盾构隧道粘钢加固设计及时机的选择提供理论基础。

     

    Abstract: Due to the impact of surrounding projects such as stacking and excavation, it has become a common problem for metro tunnels to produce large deformations. At present, the means to control tunnel deformation is mainly the bonded steel plate reinforcement method, but the existing researches on the evaluation and analysis of the effect of bonded steel plate reinforcement are not clear. Based on the indoor model tests with the similarity ratio of 1:5, the bearing capacity, load-displacement relationship and structural failure mode of shield tunnels reinforced by the bonded steel plates under different deformation conditions are studied. Furthermore, the effects of bonded steel reinforcement and reasonable reinforcement timing are analyzed. The results show that: (1) When the vertical deformation are 7.4‰D, 15‰D and 20‰D respectively (D is the outer diameter of the tunnel), the bonded steel plate reinforcement is adopted for the tunnel structure. Compared with the original structure, the failure loads of the structure reinforced by the bonded steel plates increase by 54.2%, 49.6% and 26.7% respectively, the vertical deformation at structural instability is 60.78, 58.74 and 62.15 mm respectively, and the horizontal deformation at structural instability is 48.46, 56.28 and 61.68 mm respectively, indicating that the bonded steel plate reinforcement can improve the structural bearing capacity, and it has no great influence on the unstable displacement, thus providing a basis for judging the structural service performance based on the displacement change. (2) It is more reasonable to use as the reinforcement time when the structural deformation is between 10‰D and 15‰D. (3) The cracking and peeling of bonding surface between steel plate and concrete are the main factors for the failure of bonded steel reinforcement structures, and the critical position is the joint near vault. These findings can provide a theoretical basis for the reinforcement design and selection of reinforcement time.

     

/

返回文章
返回