• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
吴建, 周志芳, 庄超. 疏干条件下隧洞涌水量及孔压分布解析研究[J]. 岩土工程学报, 2020, 42(10): 1894-1902. DOI: 10.11779/CJGE202010015
引用本文: 吴建, 周志芳, 庄超. 疏干条件下隧洞涌水量及孔压分布解析研究[J]. 岩土工程学报, 2020, 42(10): 1894-1902. DOI: 10.11779/CJGE202010015
WU Jian, ZHOU Zhi-fang, ZHUANG Chao. Analytical study on water inflow and pore water pressure of tunnels under drainage[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(10): 1894-1902. DOI: 10.11779/CJGE202010015
Citation: WU Jian, ZHOU Zhi-fang, ZHUANG Chao. Analytical study on water inflow and pore water pressure of tunnels under drainage[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(10): 1894-1902. DOI: 10.11779/CJGE202010015

疏干条件下隧洞涌水量及孔压分布解析研究

Analytical study on water inflow and pore water pressure of tunnels under drainage

  • 摘要: 隧洞涌水和孔隙水压力计算一直是地下工程领域最为关注的焦点问题,然而对于疏干条件下隧洞涌水量及衬孔隙水压力的变化规律仍未得到很好的解决。针对浅埋、深埋及衬砌隧洞分别进行解析分析,然后利用数值计算方法反算出关键参数(影响距离、等效地下水位及衬砌等效地下水位)的计算公式,进一步提出了隧洞涌水量的解析公式,探讨了孔隙水压力的分布规律。结果表明,疏干条件下隧洞涌水量取决于隧洞半径、初始地下水位高度及围岩与衬砌相对渗透性,其中围岩与衬砌相对渗透性起到决定性因素;衬砌圈显著改变了隧洞涌水量大小与外水压力分布规律,随着相对渗透性的增大,孔压解析解与数值解的拟合程度逐渐提高;通过与传统解析公式及数值的相互对比,提出的解析公式真实刻画了浅埋、深埋和衬砌隧洞渗流场特征,计算结果更加合理和准确。

     

    Abstract: The calculation of water inflow and pore water pressure of tunnels is always the focus of underground engineering. However, the effect of water inflow and pore water pressure of tunnels under drainage has not been well solved. The analytical analysis of shallow, deep and lined tunnels is carried out respectively. Then, the expressions for the key parameters (influencing distance, equivalent underground water level and equivalent underground water level of linings) are obtained by using the numerical method, and the analytical formulae for water inflow into tunnels are put forward. Finally, the distribution rules of pore water pressure are discussed. The results show that the water inflow into tunnels depends on the tunnel radius, the initial groundwater level and the relative permeability of the surrounding rock and linings, among which the relative permeability of the surrounding rock and linings plays a key role. The lining ring significantly changes the amount of water inflow and distribution of pore water pressure of tunnels. With the increase of the relative permeability, the fitting degree between the analytical solution and the numerical solution of pore water pressure increases gradually. Compared with traditional analytical solution and numerical solution, the proposed analytical formula more truly describes the seepage field characteristics of shallow, deep and lined tunnels, and the calculated results are more reasonable and accurate.

     

/

返回文章
返回