• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
程桦, 陈汉青, 曹广勇, 荣传新, 姚直书, 蔡海兵. 冻土毛细-薄膜水分迁移机制及其试验验证[J]. 岩土工程学报, 2020, 42(10): 1790-1799. DOI: 10.11779/CJGE202010003
引用本文: 程桦, 陈汉青, 曹广勇, 荣传新, 姚直书, 蔡海兵. 冻土毛细-薄膜水分迁移机制及其试验验证[J]. 岩土工程学报, 2020, 42(10): 1790-1799. DOI: 10.11779/CJGE202010003
CHENG Hua, CHEN Han-qing, CAO Guang-yong, RONG Chuan-Xin, YAO Zhi-shu, CAI Hai-bing. Migration mechanism of capillary-film water in frozen soil and its experimental verification[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(10): 1790-1799. DOI: 10.11779/CJGE202010003
Citation: CHENG Hua, CHEN Han-qing, CAO Guang-yong, RONG Chuan-Xin, YAO Zhi-shu, CAI Hai-bing. Migration mechanism of capillary-film water in frozen soil and its experimental verification[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(10): 1790-1799. DOI: 10.11779/CJGE202010003

冻土毛细-薄膜水分迁移机制及其试验验证

Migration mechanism of capillary-film water in frozen soil and its experimental verification

  • 摘要: 鉴于毛细理论和薄膜水理论只考虑一种水分迁移机制,难以全面合理揭示土体冻胀机理。根据毛细水和薄膜水在孔隙中的赋存特征,提出以孔径D=0.1 μm或横向弛豫时间T2=2.5 ms作为毛细水和薄膜水的判别条件。基于流体动力学和热力学基本原理,分别建立了薄膜水迁移驱动力、广义Clapeyron方程力学和毛细-薄膜水迁移驱动力模型,给出了压力变量和吸力变量之间的换算系数λ;模型分析表明,冻结大孔在弯曲冰-水界面处产生一集中吸力,驱使未冻孔隙中的毛细水和薄膜水向冻结大孔内部迁移;其迁移路径为:未冻孔隙中的毛细水和颗粒表面薄膜水→弯曲冰-水界面→冻结大孔内壁薄膜水。最后,根据粉土在冻结过程中的低场-核磁共振试验,证明了毛细水和薄膜水的分界线,并验证了毛细-薄膜水分迁移模型及迁移路径的正确性。

     

    Abstract: In view of the capillary theory and the film water theory only considering one kind of the water migration mechanisms, it is difficult to fully and reasonably reveal the frost heaving mechanism of the soil. According to the occurrence characteristics of capillary water and film water in the pores, the pore diameter 0.1 μm or the transverse relaxation time 2.5 ms is proposed as the criteria for determining the capillary water and film water. Based on the fluid dynamics and fundamental thermodynamics, a driving force model for water migration of film, a mechanical model for the generalized Clapeyron equation, and a driving force model for migration of capillary-film water are established, and the conversion coefficient between the pressure variable and the suction variable is given. The model analysis shows that the frozen macropore generates a concentrated suction at the curved ice-water interface, which drives the capillary water and film water in the unfrozen small pores to migrate into the frozen macropore. The migration path is as follows: the capillary water in the unfrozen small pores and the film water on the particle surface → curved ice-water interface → the film water on the wall of frozen macropore. Finally, the low-field NMR tests on silt during freezing are used to prove the boundary between the capillary water and the film water, and the correctness of the migration model and path of the capillary-film water is verified.

     

/

返回文章
返回