• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
王立忠, 刘亚竞, 龙凡, 洪义. 软土地铁深基坑倒塌分析[J]. 岩土工程学报, 2020, 42(9): 1603-1611. DOI: 10.11779/CJGE202009004
引用本文: 王立忠, 刘亚竞, 龙凡, 洪义. 软土地铁深基坑倒塌分析[J]. 岩土工程学报, 2020, 42(9): 1603-1611. DOI: 10.11779/CJGE202009004
WANG Li-zhong, LIU Ya-jing, LONG Fan, HONG Yi. Collapse of deep excavations for metro lines in soft clay[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(9): 1603-1611. DOI: 10.11779/CJGE202009004
Citation: WANG Li-zhong, LIU Ya-jing, LONG Fan, HONG Yi. Collapse of deep excavations for metro lines in soft clay[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(9): 1603-1611. DOI: 10.11779/CJGE202009004

软土地铁深基坑倒塌分析

Collapse of deep excavations for metro lines in soft clay

  • 摘要: 随着地下轨道交通的建设,沿海城市建筑密集区出现了大量狭长型软土深基坑,基坑开挖导致的灾变情况时有发生,最为著名的如新加坡地铁环线Nicoll highway(2004)基坑倒塌与杭州湘湖地铁基坑倒塌(2008),造成重大人员伤亡。传统的极限平衡法设计方法将抗隆起安全度(FOS)与支护侧移分别独立考虑,且不能考虑基坑开挖宽度的影响,而有限元强度折减法则存在计算稳定性判断准则、本构关系选择及参数确定等难题。笔者于2014年修改了剑桥大学Bolton课题组提出的强度发挥度设计法(MSD)中的余弦曲线,提出了基于偏态高斯曲线机动场的MMSD上限分析法,成功用于软土宽基坑稳定的分析;随后于2018年采用MMSD方法成功分析软土狭长型基坑支护土体的变形。进一步采用MMSD方法对新加坡Nicoll highway基坑和杭州湘湖基坑两个狭长型基坑倒塌案例进行分析,并与实测值、极限平衡法(包括规范法、Hsieh等的方法、Su等的方法)和有限元法预测结果进行了比较。结果表明MMSD法基于狭长深窄基坑相适应的机动场,采用实测土体应力应变关系且能考虑土体不排水强度各向异性,可以更准确地预测倒塌发生机制。

     

    Abstract: In recent decades, numerous deep excavation projects for metro lines and transportation tunnels have been executed in soft clay in urban areas of coastal cities. Collapses of these deep excavations in soft clay are reported from time to time, including the infamous collapses of Nicoll highway excavation for metro circle line in Singapore (2004) and Xianghu excavation for a subway station in Hangzhou (2008). In routine practice, the stability or deformation of an excavation is calculated using the separated approaches, i.e., the limit equilibrium method and the finite element method (FEM), respectively. It is well recognized that the former usually does not consider the effect of excavation width, while the latter usually involves very sophisticated soil models and additional challenges posed by determination of model parameters. These limitations have led to the development of an upper bound method entitled mobilizable strength design (MSD) method by Prof. Bolton in Cambridge University, for predicting stability and deformation of excavations in soft clay in a unified yet simple manner. The authors (Wang & Long, 2014) have recently proposed an improved MSD method (i.e., MMSD method), where a more realistic plastic deformation mechanism is implemented for analyzing the stability of excavations in soft clay. The capability of MMSD for predicting deformation of excavations in soft clay is later verified against the field data of eight case histories (Wang et al., 2018). This study aims to examine the capability of MMSD to predict the collapse of Nicoll highway excavation and Xianghu excavation. It is shown that the MMSD method offers more accurately the prediction for the occurrence of the collapses of the two case histories than the existing limit equilibrium methods (standard method, Hsieh et al's. method and Su et al's. method) and finite element methods, as it accounts for a more realistic deformation mechanism for narrow deep excavations and the strength anisotropy of soft clay.

     

/

返回文章
返回