膨润土膨胀力时程曲线的形态特征及其模拟
Features and modelling of time-evolution curves of swelling pressure of bentonite
-
摘要: 为了研究膨润土膨胀力时程曲线的形态特征,采用恒体积法开展了不同干密度高庙子(GMZ)膨润土的膨胀力试验。试验结果表明,不同干密度高庙子膨润土的膨胀力时程曲线均呈典型的双峰形态:膨胀力先迅速增大至一个峰值,然后小幅回落或增速明显减小,随后再次升高并最终趋于稳定。膨胀力时程曲线的形态由膨胀力峰值、谷值、终值、峰值时间、谷值时间和终值时间等6个关键参数控制。在分析膨胀力形成机理及其发展规律的基础上,基于累积“楔”力与消散“楔”力相互叠加的原理,并假设累积“楔”力随水化时间呈指数分布,消散“楔”力随水化时间呈高斯分布,建立了一个膨胀力时程曲线的预测模型。该模型仅包含5个参数,均具有较明确的物理意义。根据试验结果和文献资料的验证结果表明,模型能够较好地模拟不同形态的膨胀力时程曲线。Abstract: In order to investigate the shape features of time-evolution curves of swelling pressure of bentonite, a series of swelling pressure tests on GMZ bentonite with different initial dry densities are carried out using the constant volume method. The results show that all the obtained time-evolution curves of swelling pressure are characterized by a typical two-peak shape: as the test starts, the swelling pressure increases sharply to a peak value, followed by decreasing to a valley value, after which it increases again to the final value. It is found that the shape of time-evolution curves of swelling pressure is controlled by 6 parameters: the peak, valley and final values of swelling pressure as well as their corresponding hydration times. According to the formation and development mechanisms of swelling pressure, a predictive model for the time-evolution curve with only 5 parameters is proposed. In this model, the swelling pressure is considered as the superposition result of accumulated and dissipated "wedge" pressures, which are assumed to be related to hydration time through an exponential and a Gaussian distribution function, respectively. The proposed model is verified by the experimental results from this paper and literatures, with satisfactory agreements between the measured results and predicted ones.