• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
刘海明, 周小贵, 王忠伟, 黄涤, 杨怀皓. 基于粒子群与Markov优化的PMIGM(1,1)模型预测路基沉降方法研究[J]. 岩土工程学报, 2019, 41(S1): 205-208. DOI: 10.11779/CJGE2019S1052
引用本文: 刘海明, 周小贵, 王忠伟, 黄涤, 杨怀皓. 基于粒子群与Markov优化的PMIGM(1,1)模型预测路基沉降方法研究[J]. 岩土工程学报, 2019, 41(S1): 205-208. DOI: 10.11779/CJGE2019S1052
LIU Hai-ming, ZHOU Xiao-gui, WANG Zhong-wei, HUANG Di, YANG Huai-hao. Prediction of subgrade settlement using PMIGM(1,1) model based on particle swarm optimization and Markov optimization[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(S1): 205-208. DOI: 10.11779/CJGE2019S1052
Citation: LIU Hai-ming, ZHOU Xiao-gui, WANG Zhong-wei, HUANG Di, YANG Huai-hao. Prediction of subgrade settlement using PMIGM(1,1) model based on particle swarm optimization and Markov optimization[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(S1): 205-208. DOI: 10.11779/CJGE2019S1052

基于粒子群与Markov优化的PMIGM(1,1)模型预测路基沉降方法研究

Prediction of subgrade settlement using PMIGM(1,1) model based on particle swarm optimization and Markov optimization

  • 摘要: 高速公路路基沉降的准确预测对高速公路病害预防和治理有着极其重要的指导意义。以往的路基沉降预测模型多为单一模型或简单改进模型,提出了一种基于粒子群与Markov优化的PMIGM(1,1)预测模型。首先,基于灰色理论,提出了改进的IGM(1,1)预测模型;然后,利用Markov理论对IGM(1,1)预测模型的相对残差序列进行修正,使得该模型能反映数据的波动特征,得到了MIGM(1,1)预测模型;在此基础上,采用粒子群算法对残差序列参数进行白化,建立了PMIGM(1,1)预测模型。将该预测模型应用于云南保施高速公路高填方路基,分析结果表明该模型可提高预测模型的精度。

     

    Abstract: Accurate prediction of subgrade settlement of expressways is of great significance to their disease prevention and treatment. The previous prediction models for the subgrade settlement are mostly single models or simple improved models. A PMIGM(1,1) prediction model based on the particle swarm optimization (PSO) and Markov optimization is proposed. Firstly, based on the grey theory, an improved GM(1,1) prediction model is put forward. Then, according to the theory knowledge of Markov chains, an MIGM(1, 1) model is built to correct the relative residuals of IGM(1, 1) model, which can reflect the volatility characteristics of the data. Based on the principle of PSO, an optimization of PMIGM(1, 1) model is set up, which crystallizes the parameters of grey interval. The forecasting model is applied to a high-fill subgrade of Baoshan-Shidian Expressway in Yunnan Province. The analysis results show that the proposed model can improve the accuracy of the forecasting model.

     

/

返回文章
返回