• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

层理方向对砂岩断裂模式及韧度的影响规律试验研究

李斌, 黄达, 姜清辉, 陈国庆

李斌, 黄达, 姜清辉, 陈国庆. 层理方向对砂岩断裂模式及韧度的影响规律试验研究[J]. 岩土工程学报, 2019, 41(10): 1854-1862. DOI: 10.11779/CJGE201910009
引用本文: 李斌, 黄达, 姜清辉, 陈国庆. 层理方向对砂岩断裂模式及韧度的影响规律试验研究[J]. 岩土工程学报, 2019, 41(10): 1854-1862. DOI: 10.11779/CJGE201910009
LI Bin, HUANG Da, JIANG Qing-hui, CHEN Guo-qing. Fracture pattern and toughness of layered sandstone influenced by layer orientation[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(10): 1854-1862. DOI: 10.11779/CJGE201910009
Citation: LI Bin, HUANG Da, JIANG Qing-hui, CHEN Guo-qing. Fracture pattern and toughness of layered sandstone influenced by layer orientation[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(10): 1854-1862. DOI: 10.11779/CJGE201910009

层理方向对砂岩断裂模式及韧度的影响规律试验研究  English Version

基金项目: 国家自然科学基金面上项目(41672300)
详细信息
    作者简介:

    李斌(1988—),男,博士研究生,主要从事岩石力学与岩石边坡工程方面的研究工作。E-mail:15683086591@163.com。

    通讯作者:

    黄达,E-mail:dahuang@hebut.edu.cn

Fracture pattern and toughness of layered sandstone influenced by layer orientation

  • 摘要: 为了探索具有层理面的砂岩断裂力学性质的各向异性,开展了具有不同层理方向的半圆形砂岩试样在不同切缝角度下的三点弯试验研究,揭示了层理方向对砂岩应力强度因子、断裂韧度及破裂模式的影响规律。试验结果表明试样破裂模式受层理面与荷载方向夹角θ控制:θ=0°时,沿层理面张裂破坏;θ=30°时,沿层理面剪切破坏;θ= 45°,60°时,切层和沿层理面混合破裂;θ=90°时,切层破坏。不同层理角度的试样测得的断裂韧度差异较大,切缝角α=0°时,θ=90°试样断裂韧度最大,θ=0°试样断裂韧度最小,且KImax/KImin=2.36。运用有限元计算了各试样的无量纲化应力强度因子,结果表明切缝角α=0°时,无量纲化II型应力强度因子YII受层理面与荷载方向夹角θ影响显著:θ=0°,90°试样YII=0,呈现I型断裂;θ=45°,60°试样YII≠0,呈现出I-II复合型断裂;θ=30°试样YII最大,以II型断裂占主导,其余切缝角度下试样无量纲化I型应力强度因子与II型应力强度因子随层理角度θ的变化呈现不同的变化规律。通过扩展有限元XFEM计算出的试样起裂角、断裂韧度及断裂路径与试验结果吻合较好,结果表明各试样的起裂角随层理面与荷载方向夹角θ及切缝角α的变化呈现一定的各向异性。试验所得规律有助于更全面理解具有层理面岩石的断裂特性,并可作为对各向异性岩石断裂力学理论研究和数值计算的有益补充。
    Abstract: In order to study the anisotropic properties of layered sandstone on fracture mechanics, the three-point bending tests on the semi-circular specimens with different layer orientations and crack angles are conducted. The variations of normalized stress intensity factors, fracture toughness and fracture patterns of these specimens with layer orientation are revealed. The results illustrate that the fracture pattern of the specimens is closely related to the angle θ between the layer orientation and the loading direction, that is, tensile splitting along the layer when θ=0°, shearing along the layer when θ=30°, tensile splitting across the layer when θ=90° and composite shearing failure across and along the layer θ=45° and 60°. The fracture toughness of the specimens with different layer orientations greatly differs with the angle between the layer orientation and the loading direction; when crack angle α=0°, the specimens with θ of 90° has the maximum fracture toughness; and when those with θ of 0° have the minimum one, the ratio equals 2.36. Modes I and II normalized stress intensity factors are calculated by using the finite element code ABAQUS. It is shown that the mode II normalized stress intensity factor of the specimens varies more evidently with the layer orientation when α equals 0°, that is, mode I fracture when θ=0°and 90°, mixed mode when θ=45° and 60°, and mode II dominated fracture when θ=30°. In addition, for the specimens with α=30°~60°, the mode I and mode II normalized stress intensity factors show different variations with the layer orientation. The crack initiation angle, mixed-mode fracture toughness and fracture trajectory of the specimens are calculated by using the extended finite element method, and are in good agreement with the experimental results. The results indicate that crack initiation angles are influenced by the layer orientation and crack angle. The findings prove to be helpful for understanding the fracture characteristics of the layered rock materials and enriching the researches on fracture mechanics and numerical simulation of anisotropic rock materials.
  • [1] ABBASS T, ANDRE V.Effect of layer orientation on the failure of layered sandstone under Brazilian test conditions[J]. International Journal of Rock Mechanics and Mining Sciences, 2010, 47: 313-322.
    [2] CHEN C S, PAN E, AMADEI B.Determination of deformability and tensile strength of anisotropic rock using Brazilian tests[J]. International Journal of Rock Mechanics and Mining Sciences, 1998, 35(1): 43-61.
    [3] DEBECKER B, VERVOORT A.Experimental observation of fracture patterns in layered slate[J]. International Journal of Fracture, 2009, 159(1): 51-62.
    [4] CHO J W, KIM H, JEON S, et al.Deformation and strength anisotropy of Asan gneiss, Boryeong shale, and Yeoncheon schist[J]. International Journal of Rock Mechanics and Mining Sciences, 2012, 50: 158-169.
    [5] 刘运思, 付鹤林, 饶军应, 等. 不同层理方位影响下板岩各向异性巴西圆盘劈裂试验研究[J]. 岩石力学与工程学报, 2012, 31(4): 785-791.
    (LIU Yun-si, FU He-lin, RAO Jun-ying, et al.Research on Brazilian disc splitting tests for anisotropy of slate under influence of different bedding orientations[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(4): 785-791. (in Chinese))
    [6] 衡帅, 杨春和, 张保平, 等. 页岩各向异性特征的试验研究[J]. 岩土力学, 2015, 36(3): 609-616.
    (HENG Shuai, YANG Chun-he, ZHANG Bao-ping, et al.Experimental research on anisotropic properties of shale[J]. Rock and Soil Mechanics, 2015, 36(3): 609-616. (in Chinese))
    [7] 刘胜利, 陈善雄, 余飞, 等. 绿泥石片岩各向异性特性研究[J]. 岩土力学, 2012, 33(12): 3616-3623.
    (LIU Sheng-li, CHEN Shan-xiong, YU Fei, et al.Anisotropic properties study of chlorite schist[J]. Rock and Soil Mechanics, 2012, 33(12): 3616-3623. (in Chinese))
    [8] KE C C, CHEN C S, TU C H.Determination of fracture toughness of anisotropic rocks by boundary element method[J]. Rock Mechanics and Rock Engineering, 2008, 41(4): 509-538.
    [9] DUTLER N, NEJATI M.On the link between fracture toughness, tensile strength, and fracture process zone in anisotropic rocks[J]. Engineering Fracture Mechanics, 2018, 201: 56-79.
    [10] KATAOKA M, OBARA Y, KURUPPU M.Estimation of fracture toughness of anisotropic rocks by semi-circular bend (SCB) tests under water vapor pressure[J]. Rock Mechanics and Rock Engineering, 2015, 48(4): 1353-1367.
    [11] CHANDLER M R.Fracture toughness anisotropy in shale[J]. Journal of Geophysical Research, 2016, 121: 1-16.
    [12] CHONG K P, KURUPPU M D.New specimen for fracture toughness determination of rock and other materials[J]. International Journal of Fracture, 1984, 26(2): 59-62.
    [13] LIM I L, JOHNSTON I W.Fracture testing of a soft rock with semi-circular specimens under three-point bending: part 1-mode I[J]. International Journal of Rock Mechanics and Mining Sciences, 1994, 31(3): 185-197.
    [14] LIM I L, JOHNSTON I W.Stress intensity factors for semi-circular specimens under three-point bending[J]. Engineering Fracture Mechanics, 1993, 44(3): 363-382.
    [15] KURUPPU M D, OBARA Y, AYATOLLAHI M R.ISRM- suggested method for determining the mode I static fracture toughness using semi-circular bend specimen[J]. Rock Mechanics and Rock Engineering, 2014, 47: 267-274.
    [16] AYATOLLAHI M R, ALIHA M R M. Wide range data for crack tip parameters in two disc-type specimens under mixed mode loading[J]. Computational Materials Science, 2007, 38(4): 660-670.
    [17] ALIHA MRM, SISTANINIA M.Geometry effects and statistical analysis of mode I fracture in guiting limestone[J]. International Journal of Rock Mechanics and Mining Sciences, 2012, 51: 128-135.
    [18] CHONG K P, KURUPPU M D, KUSZMAUL J S.Fracture toughness determination of layered materials[J]. Engineering Fracture Mechanics, 1987, 28(1): 43-54.
    [19] WANG S S, YAU J F, CORTEN H T.A mixed-mode crack analysis of rectilinear anisotropic solids using conservation laws of elasticity[J]. International Journal of Fracture, 1980, 16: 247-259.
    [20] BANKS-SILLS L, HERSHKOVITZ I, WAWRZYNEK P A, et al.Methods for calculating stress intensity factors in anisotropic materials: part I z=0 is a symmetric plane[J]. Engineering Fracture Mechanics, 2005, 72(15): 2328-2358.
    [21] BANKS-SILLS L, WAWRZYNEK P A, CARTER B, et al.Methods for calculating stress intensity factors in anisotropic materials: part II arbitrary geometry[J]. Engineering Fracture Mechanics, 2007, 74(8): 1293-1307.
    [22] MOHTARAMI E, BAGHBANAN A, HASHEMOLHOSSEINI H.Prediction of fracture trajectory in anisotropic rocks using modified maximum tangential stress criterion[J]. Computers and Geotechnics, 2017, 92: 108-120.
  • 期刊类型引用(9)

    1. 郝瑞卿,周玉国,郜昕玥,贾天枢,张彬伟,刘晓东. 层理角度对砂岩力学特性及断裂破坏规律影响研究. 矿业研究与开发. 2024(02): 103-109 . 百度学术
    2. 李勇,胡双杰,桂辉高,孙传猛,甘涛,李银. 层理方向对含预制裂纹页岩Ⅰ型断裂特性的影响. 矿业安全与环保. 2024(01): 1-6 . 百度学术
    3. 陈进帆,尚德磊,赵志宏,陈朝伟. 基于机器学习的含充填裂隙岩样断裂行为预测方法. 岩石力学与工程学报. 2023(S1): 3458-3472 . 百度学术
    4. 王晓雷,李前程,李群,闫顺玺,王宏刚. 单轴荷载下层状玄武岩的破裂模式和声发射特征. 矿业研究与开发. 2023(08): 127-131 . 百度学术
    5. 尚德磊,陈进帆,褚鹏. 岩石张拉裂缝与充填胶结裂隙的相互作用. 岩土力学. 2023(S1): 319-331 . 百度学术
    6. 郑强强,徐颖,胡浩,钱佳威,宗琦,谢平. 单轴荷载作用下砂岩的破裂与速度结构层析成像. 岩土工程学报. 2021(06): 1069-1077 . 本站查看
    7. 陈彦安,卞康,刘建,崔德山,李一冉. 非对称载荷下各向异性砂岩半圆弯曲断裂特性的离散元研究. 岩石力学与工程学报. 2021(07): 1412-1427 . 百度学术
    8. 戴兵,单启伟,罗鑫尧,薛永明. 含孔洞岩石在静应力下的循环冲击试验研究. 黄金科学技术. 2020(04): 531-540 . 百度学术
    9. 刁心宏,傅昱,洪鹏,于洋,丰光亮. 不同层理板岩破坏过程的声发射特征. 昆明理工大学学报(自然科学版). 2020(05): 116-123 . 百度学术

    其他类型引用(13)

计量
  • 文章访问数:  254
  • HTML全文浏览量:  5
  • PDF下载量:  221
  • 被引次数: 22
出版历程
  • 收稿日期:  2018-12-03
  • 发布日期:  2019-10-24

目录

    /

    返回文章
    返回