• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

工业镍铁渣的路用特性及原位试验研究

贺炜, 刘剑锋, 尹平保, 陈彦虎, 杨文斌, 陈宇林, 吴永昌

贺炜, 刘剑锋, 尹平保, 陈彦虎, 杨文斌, 陈宇林, 吴永昌. 工业镍铁渣的路用特性及原位试验研究[J]. 岩土工程学报, 2019, 41(10): 1809-1816. DOI: 10.11779/CJGE201910004
引用本文: 贺炜, 刘剑锋, 尹平保, 陈彦虎, 杨文斌, 陈宇林, 吴永昌. 工业镍铁渣的路用特性及原位试验研究[J]. 岩土工程学报, 2019, 41(10): 1809-1816. DOI: 10.11779/CJGE201910004
HE Wei, LIU Jian-Feng, YIN Ping-bao, CHEN Yan-hu, YANG Wen-bin, CHEN Yu-lin, WU Yong-chang. Properties and field tests of industrial ferro-nickel slag for roads[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(10): 1809-1816. DOI: 10.11779/CJGE201910004
Citation: HE Wei, LIU Jian-Feng, YIN Ping-bao, CHEN Yan-hu, YANG Wen-bin, CHEN Yu-lin, WU Yong-chang. Properties and field tests of industrial ferro-nickel slag for roads[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(10): 1809-1816. DOI: 10.11779/CJGE201910004

工业镍铁渣的路用特性及原位试验研究  English Version

详细信息
    作者简介:

    贺炜(1982—),男,教授,硕士生导师,主要从事岩土工程防灾减灾及深基础工程方面教学和科研工作。E-mail:wadeho@csust.edu.cn。

Properties and field tests of industrial ferro-nickel slag for roads

  • 摘要: 综合采用室内和原位试验研究了工业镍铁渣作为路基填料的适用性。首先实测并统计了不同地区工业镍铁渣的化学成分,分析得到了其主要组分及变异性;同时在室内开展了不同击实条件下的颗粒特性、抗剪强度指标、CBR、压蒸粉化率及回弹模量试验,探讨了不同应用条件下工业镍铁渣的力学特性及路用指标。在此基础上,设计并实施了镍铁渣路堤足尺原位试验,实测了施工期及工后路堤沉降量、水平位移及孔隙水压力的发展规律,并基于有害物检测试验结果评价了环境影响评价。研究结果表明:镍铁渣主要由SiO2、MgO、和CaO 3种成分组成,其中游离态MgO与CaO具有一定膨胀性,用于填料前须确保浸水膨胀率不大于2%;镍铁渣为级配不良砾土,标准击实功下其颗粒级配变化较小,掺配10%~20%的黏土有利于改善其路用性能指标。原位试验结果表明,采用土工加筋路堤方式应用镍铁渣效果较好,监测获得的路基变形量在施工初期即可稳定,施工后期及工后变形较小,渗透性好,孔隙水压力可即时消散。根据镍铁渣环境有害物质检出值,其为一般工业固体废物,可直接入场(非预处理)填埋,符合路基填料的环保要求。综合力学及环境试验结果可知,镍铁渣进行适当改良或处理后可直接作为路基填料使用。
    Abstract: The adaptability of industrial ferro-nickle slag as road fill is studied using the laboratory and field tests. Firstly, chemical compositions of industrial ferro-nickel slag from various districts are tested and statistically analyzed to examine the main components and the relevant variability. The slag is then tested in laboratory to obtain particle characteristics (under different compaction efforts), shear strength index, CBR, percentage of powered slag in autoclave and resilient modulus, thus the mechanical behavior and index as road fills are evaluated. Based on this, full-scale field tests on ferro-nickel slag embankment are designed and implemented. The embankment settlement, deflection and pore water pressure are monitored during and after construction, and harmful substances are detected to assess their environmental impact. The study indicates that the ferro-nickel slags is largely composed of three components: SiO2, MgO, and CaO. The MgO and CaO at free stage are expansive to some extent, therefore the soaked expansion of the slag shall be tested before adopted in roads. The ferro-nickel slag is defined as poorly graded gravel, with minor change of grading under standard compaction effort. The behavior of the slag as road fill can be improved by being mixed with clay of 10%~20% by mass. The field tests indicate that the ferro-nickel slag can be successfully applied in reinforced embankment. The monitoring settlement becomes stable at the initial stage of construction, and minor settlement occurs thereafter. The slag is highly premeable, thus the excess pore water pressure can be dissipiated immediately. According to the detected harmful substances, the ferro-nickel slag is a general industrial solid waste, which is conforming to the environmental requirements as road fills, and can be buried directly (no pre-processing required). According to the mechanical and environmental tests, the ferro-nickel slag is able to be adopted as road fills after appropriate improvement.
  • [1] BEIDOU X, RENFEI L, XINYU Z, et al.Constraints and opportunities for the recycling of growing ferronickel slag in China[J]. Resources, Conservation and Recycling, 2018, 139: 15-16.
    [2] JTG D30—2015 公路路基设计规范[S]. 2015.
    (JTG D30—2015 Specifications for design of highway subgrades[S]. 2015. (in Chinese))
    [3] KOKUBU K, KAWASE K.Utilization of ferro-nickel slag as fine aggregates for concrete[J]. Concrete Journal, 1994, 32(2): 15-22.
    [4] KOKUBU K, KAWASE K.Guidelines for construction using ferronickel slag fine aggregate congregate[R]. Concrete Library of JSCE, 1994.
    [5] SAHA A K, SARKER P K.Compressive strength of mortar containing ferronickel slag as replacement of natural sand[J]. Procedia Engineering, 2017(171): 689-694.
    [6] SAHA A K, KHAN M N N, SARKER P K. Value added utilization of by-product electric furnace ferronickel slag as construction materials: a review[J]. Resources Conservation & Recycling, 2018(134): 10-24.
    [7] WANG G.Hot-mix asphalt that contains nickel slag aggregate - laboratory evaluation of use in highway construction[J]. Transportation Research Record Journal of the Transportation Research Board, 2011(2208): 1-8.
    [8] WANG G.Slag use in highway construction-the philosophy and technology of its utilization[J]. International Journal of Pavement Research & Technology, 2011, 4(2): 97-103.
    [9] TANGAHU B V, WARMADEWANTHI I, SAPTARINI D, et al.Ferronickel slag performance from reclamation area in Pomalaa, Southeast Sulawesi, Indonesia[J]. Advances in Chemical Engineering & Science, 2015, 5(3): 408-412.
    [10] DEMOTICA J S, JR R F A, MALALUAN R M, et al. Characterization and leaching assessment of ferronickel slag from a smelting plant in Iligan City, Philippines[J]. Physics of Fluids, 2012, 24(7): 470-474.
    [11] HUANG D, CHEN S H, MON H H.The preliminary study on re-utilization of ferrous-nickel slag to replace conventional construction material for road construction (sub-grade layer improvement)[J]. Advanced Materials Research, 2013, 723: 694-702.
    [12] KANG S S, PARK K, KIM D.Potential soil contamination in areas where ferronickel slag is used for reclamation work[J]. Materials, 2014, 7(10): 7157-7172.
    [13] GB/T 25824—2010 道路用钢渣[S]. 2010.
    (GB/T 25824—2010 Steel slag for road[S]. 2010. (in Chinese))
    [14] FIDANCEVSKA E, MANGUTOVA B, MILOSEVSKI D, et al.Obtaining of dense and highly porous ceramic materials from metallurgical slag[J]. Science of Sintering, 2003, 35(2): 85-91.
    [15] MARAGKOS I, GIANNOPOULOU I P, PANIAS D.Synthesis of ferronickel slag-based geopolymers[J]. Minerals Engineering, 2009, 22(2): 196-203.
    [16] SATO T, WATANABA K, OTA A, et al.Ifluence of excessive bleeding on frost susceptibility of concrete incorporating ferronickel slag as gggregates[C]// 36th Conference on Our World in Concrete & Structures. Singapore, 2011.
    [17] KOMNITSAS K, ZAHARAKI D, BARTZAS G.Effect of sulphate and nitrate anions on heavy metal immobilisation in ferronickel slag geopolymers[J]. Applied Clay Science, 2013, 73(1): 103-109.
    [18] LEMONIS N, TSAKIRIDIS P E, KATSIOTIS N S, et al.Hydration study of ternary blended cements containing ferronickel slag and natural pozzolan[J]. Construction & Building Materials, 2015, 81(11): 130-139.
    [19] CHOI Y C, CHOI S.Alkali-silica reactivity of cementitious materials using ferro-nickel slag fine aggregates produced in different cooling conditions[J]. Construction & Building Materials, 2015, 99: 279-287.
    [20] SAHA A K, SARKER P K.Expansion due to alkali-silica reaction of ferronickel slag fine aggregate in OPC and blended cement mortars[J]. Construction & Building Materials, 2016, 123: 135-142.
    [21] GB50021—2001 岩土工程勘察规范[S]. 2009. (GB50021—2001 Code for investigation of geotechnical engineering[S]. 2009. (in Chinese))
    [22] ASTM D2487—11 Unified soil classification system[S]. 2011.
    [23] JTGE40—2007 公路土工试验规程[S]. 2007.
    (JTGE40—2007 Test methods of soils for highway engineering[S]. 2007. (in Chinese))
    [24] 聂志红. 镍铁渣作为地基回填材料与路基填料的可行性试验报告TM20180028—0002[R]. 长沙: 湖南铁院土木工程检测有限公司, 2018.
    (NIE Zhi-hong.Feasibility research report of nickel ferro slag utilized as foundation backfill material and subgrade-TM20180028—0002[R]. Changsha: Hunan Railway College-Civil Engineering Testing Co, Ltd, 2018. (in Chinese))
    [25] 段庄, 但秋君, 李智文. 珠海(阳江)合作共建园区生活配套区填土工程施工设计说明(岩01)[R]. 珠海: 珠海市规划设计研究院, 2017.
    (DUAN Zhuang, DAN QIU Jun, LI Zhi-wen.Zhuhai (Yangjiang) co-construction park construction supporting area construction design description (Ran 01) [R]. Zhuhai: Zhuhai Planning and Design Institute, 2017. (in Chinese))
    [26] 张旭. 粤环境监测LB字(2016)第39号之1[R]. 广州: 广东省环境保护厅, 2016.
    (ZHANG Xu. Guangdong environmental monitoring LB (2016) No. 39-1[R]. Guangzhou: Guangdong Provincial Department of Environmental Protection, 2016. (in Chinese))
    [27] 环境保护部华南环境科学研究所. 华环监测字S2017第096号[R]. 广州: 环境保护部华南环境科学研究所, 2017.
    (Ministry of Environmental Protection-South China Institute of Environmental Sciences. Huahuan monitoring report S2017 No. 096 [R]. Guangzhou: Ministry of Environmental Protection-South China Institute of Environmental Sciences, 2017. (in Chinese))
    [28] GB 5085.3—2007 危险废物鉴别标准浸出毒性鉴别[S]. 2007. (GB 5085.3—2007 Identification criteria for hazardous wastes identification of leaching toxicity[S]. 2007. (in Chinese))
    [29] 环发[2004] 75号危险废物安全填埋处置工程建设技术要求[S]. 2004.
    (Huanfa [2004] No. 75 technical requirements for safe landfill disposal construction of hazardous wasteuanfa [2004] No. 75 technical requirements for safe landfill disposal construction of hazardous waste[S]. 2004. (in Chinese))
计量
  • 文章访问数:  294
  • HTML全文浏览量:  8
  • PDF下载量:  175
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-02-11
  • 发布日期:  2019-10-24

目录

    /

    返回文章
    返回