• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

脂肪族离子固化剂改性水泥土的机理研究

徐菲, 蔡跃波, 钱文勋, 韦华, 庄华夏

徐菲, 蔡跃波, 钱文勋, 韦华, 庄华夏. 脂肪族离子固化剂改性水泥土的机理研究[J]. 岩土工程学报, 2019, 41(9): 1679-1687. DOI: 10.11779/CJGE201909012
引用本文: 徐菲, 蔡跃波, 钱文勋, 韦华, 庄华夏. 脂肪族离子固化剂改性水泥土的机理研究[J]. 岩土工程学报, 2019, 41(9): 1679-1687. DOI: 10.11779/CJGE201909012
XU Fei, CAI Yue-bo, QIAN Wen-xun, WEI Hua, ZHUANG Hua-xia. Mechanism of cemented soil modified by aliphatic ionic soil stabilizer[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(9): 1679-1687. DOI: 10.11779/CJGE201909012
Citation: XU Fei, CAI Yue-bo, QIAN Wen-xun, WEI Hua, ZHUANG Hua-xia. Mechanism of cemented soil modified by aliphatic ionic soil stabilizer[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(9): 1679-1687. DOI: 10.11779/CJGE201909012

脂肪族离子固化剂改性水泥土的机理研究  English Version

基金项目: 国家重点研发计划重点专项项目(2016YFC0401610); 中央级公益性科研院所业务费专项项目(Y417015)
详细信息
    作者简介:

    徐 菲(1989— ),男,博士研究生,主要从事水泥基材料改性的相关研究。E-mail: babyshaq@126.com。

    通讯作者:

    钱文勋,E-mail:wxqian@nhri.cn

Mechanism of cemented soil modified by aliphatic ionic soil stabilizer

  • 摘要: 水泥基材料加固土(水泥土)存在早期强度低、易开裂变形等性能缺陷。为对其改性,在水泥土中掺入含水率体积1/300~1/50不等的新型土壤固化材料,离子固化剂(ISS)。通过无侧限抗压强度试验、体积化学减缩试验,探究了ISS改性水泥土的可行性,并通过对表面吸附特性、物相构成演变、微结构特性的表征及分析,对ISS改性水泥土的机理进行了系统的研究。结果表明:ISS分子对于水泥土各组分具有显著的选择吸附性;ISS掺入水泥土后,能够提升体系内各组分的分散性并降低黏土矿物结合水的能力,进而加速土体内水化反应产物的生成,优化土体孔隙结构,提升土体强度并增大体积化学减缩;最优ISS掺量为1/150,过量的掺入会减弱ISS的改性效果,但可降低水泥土体积的化学减缩。相关成果可为离子固化剂应用于水泥土的改性提供一定的参照。
    Abstract: The relatively low early strength and significant cracks are the common issues for the cementitious materials-stabilized soil (cemented soil). To remedy its defects, novel ionic soil stabilizers (ISS) with dosages from 1/300 to 1/50 of water content volume of the cemented soil are applied. Through the tests on unconfined compressive strength and volume chemical shrinkage, the modification feasibility of ISS application is verified. Through the characterization and analyses of the surface adsorption behaviors, phase evolution and micro-structure, the modification mechanisms of ISS on cemented soil are systematically studied. The results indicate that the ISS molecules adsorb on the compositions of cemented soil selectively. After the ISS addition, the system dispersion is enhanced, the water combination capacity of soil minerals is reduced, thus accelerating the formation of hydration products, benefiting the pore distribution and increasing the volume chemical shrinkage. The optimum dosage of this study is 1/150, and the excessive addition will retard the modification effects but reduce the chemical shrinkage. The results can be used as a reference for the modification of cemented soil with ISS.
  • [1] HORPIBULSUK S, RACHAN R, CHINKULKIJNIWAT A, et al.Analysis of strength development in cement-stabilized silty clay from microstructural considerations[J]. Construction & Building Materials, 2010, 24(10): 2011-2021.
    [2] SONG D, CHEN B.Extended energy accounting for energy consumption and co2, emissions of cement industry—a basic framework[J]. Energy Procedia, 2016, 88: 305-308.
    [3] 易耀林, 李晨, 孙川, 等. 碱激发矿粉固化连云港软土试验研究[J]. 岩石力学与工程学报, 2013, 32(9): 1820-1826.
    (YI Yao-lin, LI Chen, SUN Chuan, et al.Test on alkali-activated ground granulated blast-furnace slag (GGBS) for Lianyungang soft soil stabilization[J]. Chinese Journal of Rock Mechanics & Engineering, 2013, 32(9): 1820-1826. (in Chinese))
    [4] JAFER H, ATHERTON W, SADIQUE M, et al.Stabilisation of soft soil using binary blending of high calcium fly ash and palm oil fuel ash[J]. Applied Clay Science, 2017, 152: 323-332.
    [5] GÖKTEPE A B, SEZER A, SEZER G İ, et al. Classification of time-dependent unconfined strength of fly ash treated clay[J]. Construction & Building Materials, 2008, 22(4): 675-683.
    [6] PHETCHUAY C, HORPIBULSUK S, SUKSIRIPATTANAPONG C, et al.Calcium carbide residue: alkaline activator for clay-fly ash geopolymer[J]. Construction & Building Materials, 2014(69): 285-294.
    [7] 任葳葳. 高分子材料改性淤泥质土及其机理研究[D]. 重庆:重庆大学, 2015.
    (REN Wei-wei.Study on modification and mechanism of silt solidified by polymer material[D]. Chongqing: Chongqing University, 2015. (in Chinese))
    [8] 刘清秉, 项伟, 崔德山. 离子土固化剂对膨胀土结合水影响机制研究[J]. 岩土工程学报, 2012, 34(10): 1887-1895.
    (LIU Qing-bing, XIANG Wei, CUI De-shan.Effect of ionic soil stabilizer on bound water of expansive soils[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(10): 1887-1895. (in Chinese))
    [9] 崔德山, 项伟, 曹李靖, 等. ISS减小红色黏土结合水膜的试验研究[J]. 岩土工程学报, 2010, 32(6): 944-949.
    (CUI De-shan, XIANG Wei, CAO Li-jing, et al.Experimental study on reducing thickness of adsorbed water layer for red clay particles treated by ionic soil stabilizer[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(6): 944-949. (in Chinese))
    [10] 刘清秉, 项伟, 张伟锋, 等. 离子土壤固化剂改性膨胀土的试验研究[J]. 岩土力学, 2009, 30(8): 2286-2290.
    (LIU Qing-bing, XIANG Wei, ZHANG Wei-feng, et al.Experimental study of ionic soil stabilizer-improved expansive soil[J]. Rock & Soil Mechanics, 2009, 30(8): 2286-2290. (in Chinese))
    [11] SUN J, SHI H, QIAN B, et al.Effects of synthetic C-S-H/PCE nanocomposites on early cement hydration[J]. Construction and Building Materials, 2017, 140: 282-292.
    [12] 唐胜程, 王伟山, 景希玮, 等. PCE结构对硅酸三钙结构和形貌的影响[J]. 建筑材料学报, 2016, 19(6): 1073-1076.
    (TANG Sheng-cheng, WANG Wei-shan, JING Xi-wei, et al.Effect of PCE structure on the structure and morphology of tricalcium silicate[J]. Journal of Building Materials, 2016, 19(6): 1073-1076. (in Chinese))
    [13] THOMAS J J, GHAZIZADEH S, MASOERO E.Kinetic mechanisms and activation energies for hydration of standard and highly reactive forms of β -dicalcium silicate (C2S)[J]. Cement & Concrete Research, 2017, 100: 322-328.
    [14] FERNÁNDEZ-JIMÉNEZ A, PALOMO A. Mid-infrared spectroscopic studies of alkali-activated fly ash structure[J]. Microporous & Mesoporous Materials, 2005, 86(1): 207-214.
    [15] 翁诗甫. 傅里叶变换红外光谱分析[M]. 北京: 化学工业出版社, 2010.
    (WENG Shi-fu.Analysis of fourier transform infrared spectroscopy[M]. Beijing: Chemical Industry Press, 2010. (in Chinese))
    [16] XU F, WEI H, QIAN W, et al.Composite alkaline activator on cemented soil: multiple tests and mechanism analyses[J]. Construction and Building Materials, 2018, 188: 433-443.
    [17] JIANG Y, ZHANG S, LIU X.Early calcium monocar- boaluminate hydrate formation in cement paste: effect of polycarboxylate type admixture[J]. Journal of Southeast University (English Edition), 2010, 26: 574-577.
    [18] PRINCE W, EDWARDS M.Interaction between ettringite and a polynaphthalene sulfonate superplasticizer in a cementitious paste[J]. Cement & Concrete Research, 2002, 32(1): 79-85.
    [19] RAMACHANDRAN V S, PAROLI R, BEAUDOIN J, et al.Handbook of thermal analysis of construction materials[M]. New York: William Andrew Publishing, 2002.
    [20] VITALE E, DENEELE D, PARIS M, et al.Multi-scale analysis and time evolution of pozzolanic activity of lime treated clays[J]. Applied Clay Science, 2017, 141: 36-45.
    [21] ZENG Q, LI K, et al.Determination of cement hydration and pozzolanic reaction extents for fly-ash cement pastes[J]. Construction & Building Materials, 2012, 27(1): 560-569.
    [22] METHA P K, MONTERO P J.Concrete: microstructure, properties and materials[M]. London: McGraw-Hill, 2006.
    [23] TAN H, GU B, MA B, et al.Mechanism of intercalation of polycarboxylate superplasticizer into montmorillonite[J]. Applied Clay Science, 2016, 129: 40-46.
    [24] AITAKBOUR R, BOUSTINGORRY P, LEROUX F, et al.Adsorption of poly carboxylate poly (ethylene glycol) (PCP) esters on montmorillonite (Mmt): effect of exchangeable cations (Na+, Mg2+ and Ca2+) and PCP molecular structure[J]. Journal of Colloid & Interface Science, 2015, 437: 227-234.
  • 期刊类型引用(18)

    1. 徐菲,葛津宇,韦华,梁嘉辉,李怀森,韩雪松. 水泥固化土火山灰反应产物的结构特性. 浙江大学学报(工学版). 2025(01): 167-176 . 百度学术
    2. 徐宏,王旭,陈伟. 离子固化剂加固粉土物理力学特性试验. 甘肃科学学报. 2024(03): 84-89 . 百度学术
    3. 朱祎坤,俞峰,陈鑫,江正兵. 高分子固化剂对水泥土强度的影响研究. 浙江理工大学学报(自然科学版). 2023(01): 131-139 . 百度学术
    4. 郭仕鹏,赵明哲,李浩然,顾兴庆,岑峰,高培伟. 低碳复合固化剂固化工程废土配比优化设计及机理分析. 交通节能与环保. 2023(04): 121-126 . 百度学术
    5. 李宏儒,赵伟龙,楠钟凯. 路液(Roadyes~(TM))固化剂改性黄土的力学特性研究. 岩土工程学报. 2023(S1): 106-109 . 本站查看
    6. 白光军,满洪峰,史征,李庆皓,胥士杰,朱金森. 离子固化剂对砖混类水泥稳定碎石性能的影响. 山东交通科技. 2023(06): 5-8 . 百度学术
    7. 崔琦. 粉煤灰水泥土抗压强度影响因素试验研究. 土工基础. 2022(01): 82-84+101 . 百度学术
    8. 王勋,郑磊,庞婧婧,陈琼. 引江济淮工程膨胀土边坡新型排水系统性能试验研究. 中国水运(下半月). 2022(03): 82-84 . 百度学术
    9. 徐菲,韦华,钱文勋,胡少伟,蔡跃波. 水泥土组成矿物的热重-热力学模拟联用分析. 建筑材料学报. 2022(04): 424-433 . 百度学术
    10. 孟卫忠. 船用蒸馏法造水机造水量少的故障分析及解决方法. 中国水运. 2022(06): 99-101 . 百度学术
    11. 张琬昕,杜晓丽,徐凤旺,葛单单,邹天民. 新型CG-SF固化土的力学特性研究. 重庆科技学院学报(自然科学版). 2022(03): 84-89+94 . 百度学术
    12. 张建俊,姚柏聪,孙源骏,刘晓龙,王宝强,梁世纪,林增华,刘静. 离子固化剂对水泥稳定煤矸石结合料耐久性能的影响. 煤炭学报. 2022(09): 3472-3482 . 百度学术
    13. 习智琴,李水生. 碱激发废渣固化原状盾构渣土力学特性研究. 地下空间与工程学报. 2022(S2): 611-618 . 百度学术
    14. 马冬冬,马芹永,黄坤,张蓉蓉. 基于NMR的地聚合物水泥土孔隙结构与动态力学特性研究. 岩土工程学报. 2021(03): 572-578 . 本站查看
    15. 邢皓枫,张好,李浩铭. 高含盐水泥土的力学特性及微观结构研究. 水文地质工程地质. 2021(03): 102-109 . 百度学术
    16. 张耄耋,黄伟,叶雨尘,赵鲁卿,王宗森. 杂填土及钢渣杂填土基层材料的制备与表征. 安徽工业大学学报(自然科学版). 2021(02): 144-151+160 . 百度学术
    17. 王佩,宋新江,徐海波,周文渊. 水泥改性膨胀土基本特性试验. 水利水电科技进展. 2021(03): 56-60 . 百度学术
    18. 朱明,王福喜,曾文超,张春雷,李磊. 城市建筑泥浆制备免烧砖的强度形成机理研究. 新型建筑材料. 2020(09): 45-48+58 . 百度学术

    其他类型引用(20)

计量
  • 文章访问数:  281
  • HTML全文浏览量:  5
  • PDF下载量:  216
  • 被引次数: 38
出版历程
  • 收稿日期:  2018-10-23
  • 发布日期:  2019-09-24

目录

    /

    返回文章
    返回