电化学法改善蒙脱土膨胀性试验研究
Experimental study on expandability of montmorillonite modified by electrochemical method
-
摘要: 基于电化学特点,提出一种可实现原位处理膨胀土的新思路,以室内配制具有高电荷的羟基铝离子溶液为电解质,在外加电场作用下,羟基铝离子进入土体实现对蒙脱土的改性。从宏观角度,对电化学改性前后的蒙脱土进行颗粒分析、界限含水率及膨胀特性试验研究,表明改性后蒙脱土膨胀特性指标显著下降,阳极区土体达到非膨胀土的性能要求。从微观层面,进行X射线衍射试验,改性后蒙脱土矿物晶格层间吸湿敏感性明显降低,表明羟基铝离子进入晶层间置换了层间阳离子,降低了矿物晶格的亲水性;通过热分析试验研究不同温度下改性前后蒙脱土的失重变化,表明羟基铝离子进入双电层交换出水化阳离子并且附着在黏土颗粒表面,减小了双电层厚度,降低了蒙脱土的膨胀性。Abstract: Based on the characteristics of electrochemistry, a new idea for in-situ treatment of expansive soils is proposed, with a high charge hydroxy aluminum ion solution as the electrolyte, and the modification of montmorillonite by hydroxyl aluminum ions into the soils under the effect of applied electric field. From the macroscopic point of view, the particle analysis is conducted, and the limiting moisture content and swelling characteristics of montmorillonite before and after electrochemical modification are studied. The results show that the swelling characteristics of the modified montmorillonite decrease significantly, and the soils in the anode area reach the performance requirements of the non-expansive soils. The X-ray diffraction tests on the montmorillonite before and after modification are carried out from the microscopic layer. The hygroscopic sensitivity between the lattice layers of the montmorillonite after modification is obviously reduced, indicating that the hydroxyl aluminum ions enter into the interlayer, replace the cations and reduce the hydrophilicity of the mineral lattice. The changes in the weight loss of montmorillonite before and after the modification at different temperatures are studied through thermal analysis. It is shown that the hydroxyl aluminum ions enter into the double layers to exchange cations and attach to the surface of clay particles, reducing the thickness of the double layers and the expansibility of the montmorillonite.