• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

砂层劈裂-压密注浆模拟试验系统研发及试验

张连震, 李志鹏, 刘人太, 张庆松, 李术才

张连震, 李志鹏, 刘人太, 张庆松, 李术才. 砂层劈裂-压密注浆模拟试验系统研发及试验[J]. 岩土工程学报, 2019, 41(4): 665-674. DOI: 10.11779/CJGE201904009
引用本文: 张连震, 李志鹏, 刘人太, 张庆松, 李术才. 砂层劈裂-压密注浆模拟试验系统研发及试验[J]. 岩土工程学报, 2019, 41(4): 665-674. DOI: 10.11779/CJGE201904009
ZHANG Lian-zhen, LI Zhi-peng, LIU Ren-tai, ZHANG Qing-song, LI Shu-cai. Simulation tests on fracture-compaction grouting process in sand layer[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(4): 665-674. DOI: 10.11779/CJGE201904009
Citation: ZHANG Lian-zhen, LI Zhi-peng, LIU Ren-tai, ZHANG Qing-song, LI Shu-cai. Simulation tests on fracture-compaction grouting process in sand layer[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(4): 665-674. DOI: 10.11779/CJGE201904009

砂层劈裂-压密注浆模拟试验系统研发及试验  English Version

基金项目: 国家自然科学基金项目(51779133); 山东省自然科学基金项目(ZR2018BEE035); 中央高校基本科研业务费专项资金项目(18CX02003A)
详细信息
    作者简介:

    张连震(1990- ),男,博士,讲师,主要从事地下工程灾害防治理论与应用方面的研究工作。E-mail:zhanglianzhen@upc.edu.cn。

  • 中图分类号: TU452

Simulation tests on fracture-compaction grouting process in sand layer

  • 摘要: 劈裂-压密模式是砂层注浆扩散过程的主要模式之一。为研究砂层劈裂-压密注浆扩散过程,研发了一套可视化注浆模拟试验系统,该系统由模拟试验架、地应力加载模块、动态监测模块以及注浆控制模块4部分构成,可实现劈裂-压密注浆扩散过程的可视化模拟。以青岛地区含黏性土砂层为典型被注介质,开展了砂层劈裂-压密注浆模拟试验,揭示了注浆扩散过程中劈裂通道形态、注浆压力、应力场以及位移场随时间变化规律,获得了试验条件下的砂层劈裂-压密注浆影响范围。研究结果表明:砂层注浆起裂方向与劈裂通道扩展方向均与大主应力方向一致,浆脉厚度在浆脉扩展方向上存在明显衰减;注浆会引起与劈裂通道垂直方向的应力增加,且该应力沿劈裂通道扩展方向衰减,但注浆对平行劈裂通道扩展方向的应力没有显著影响;劈裂-压密注浆对劈裂通道两侧砂层的影响范围非常有限(20~40 cm)。最后从单孔注浆量、钻孔布置方面对砂层劈裂-压密注浆设计方法提出了改进建议。
    Abstract: The fracture-compaction mode is the main diffusion mode of grouting process in sand layer. In order to study the diffusion process of fracture-compaction grouting mode in sand layer, a visible grouting simulation test system composed of test frame, stress loading module, dynamic monitoring module and grouting module is designed and developed. As the typical grouted medium, the clayey sand in Qingdao is used in the fracture-compaction grouting simulation tests. The characteristics of the dynamic evolution of the stress and displacement fields of sand layer and the propagation of fracture channel are derived. The influence scope of fracture-compaction grouting in sand layer is obtained. The results show that the initiation and propagation of fracture channel direction are consistent with those of the major principal stress in sand layer. The width of grouting vein decreases remarkably along the propagation direction. Under the influences of grouting, the vertical stress increases from the minor principal stress and decays spatially along the propagation direction. However, the horizontal stress has no obvious changes in the grouting process. The influence scope of fracture-compaction grouting in sand layer is very limited (20~40 cm). Finally, improvement suggestions for fracture-compaction grouting in sand layer are put forward from two aspects (grouting amount of single hole and arrangement of injection hole).
  • [1] 唐传政, 彭晓秋. 武汉地铁基坑工程地下水问题及其处理对策[J]. 岩土工程学报, 2010, 32(增刊1): 410-414.
    (TANG Chuan-zheng, PENG Xiao-qiu.Problems and treatment of groundwater in foundation pits of Wuhan metro[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(S1): 410-414. (in Chinese))
    [2] 张红军. 上覆富水砂层隧道开挖面稳定性分析与注浆加固对策研究[D]. 济南: 山东大学, 2017.
    (ZHANG Hong-jun.Study on tunnel face stability and grouting reinforcement for tunnels overlying water-rich sand stratum[D]. Jinan: Shandong University, 2017. (in Chinese))
    [3] 刘建国. 富水复杂地质浅埋暗挖隧道修建技术[M]. 北京: 人民交通出版社, 2012.
    (LIU Jian-guo.Construction technology for the shallowly burid and darkly excavated tunnel in water-rich complex strata[M]. Beijing: China Communications Press, 2012. (in Chinese))
    [4] ZHANG Q, ZHANG L, LIU R, et al.Grouting mechanism of quick setting slurry in rock fissure with consideration of viscosity variation with space[J]. Tunnelling and Underground Space Technology. 2017, 70: 262-273.
    [5] 李术才, 张伟杰, 张庆松, 等. 富水断裂带优势劈裂注浆机制及注浆控制方法研究[J]. 岩土力学, 2014, 35(3): 744-752.
    (LI Shu-cai, ZHANG Wei-jie, ZHANG Qing-song, et al.Research on advantage-fracture grouting mechanism and controlled grouting method in water-rich fault zone[J]. Rock and Soil Mechanics, 2014, 35(3): 744-752. (in Chinese))
    [6] 房凯, 夏唐代, 包柳青, 等. 考虑滤过效应的卵砾石层浆液扩散研究[J]. 岩石力学与工程学报, 2013, 32(7): 1443-1448.
    (FANG Kai, XIA Tang-dai, BAO Liu-qing, et al.Cement grout dispersion considering filtration in gravel[J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32(7): 1443-1448. (in Chinese))
    [7] 张连震. 地铁穿越砂层注浆扩散与加固机理及工程应用[D]. 济南: 山东大学, 2017.
    (ZHANG Lian-zhen.Study on penetration and reinforcement mechanism of grouting in sand layer disclosed by subway tunnel and its[D]. Jinan: Shandong University, 2017. (in Chinese))
    [8] 杨坪, 唐益群, 彭振斌, 等. 砂卵(砾)石层中注浆模拟试验研究[J]. 岩土工程学报, 2006, 28(12): 2134-2138.
    (YANG Ping, TANG Yi-qun, PENG Zhen-bin, et al.Study on grouting simulating experiment in sandy gravels[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(12): 2134-2138. (in Chinese))
    [9] 钱自卫, 姜振泉, 曹丽文, 等. 弱胶结孔隙介质渗透注浆模型试验研究[J]. 岩土力学, 2013, 34(1): 139-143.
    (QIAN Zi-wei, JIANG Zhen-quan, CAO Li-wen, et al.Experimental study of penetration grouting model for weakly cemented porous media[J]. Rock and Soil Mechanics, 2013, 34(1): 139-43. (in Chinese))
    [10] 宁博, 吴时强, 谢兴华, 等. 渗流作用对砂砾石层灌浆的影响试验研究[J]. 岩土力学, 2011, 32(增刊1): 285-289.
    (NING Bo, WU Shi-qiang, XIE Xing-hua, et al.Experimental study of influence of seepage on grouting in sandy gravels[J]. Rock and Soil Mechanics, 2011, 32(S1): 285-289. (in Chinese))
    [11] 李术才, 冯啸, 刘人太, 等. 考虑渗滤效应的砂土介质注浆扩散规律研究[J]. 岩土力学, 2017, 38(4): 925-933.
    (LI Shu-cai, FENG Xiao, LIU Ren-tai, et al.Diffusion of grouting cement in sandy soil considering filtration effect[J]. Rock and Soil Mechanics, 2017, 38(4): 925-933. (in Chinese))
    [12] 韩伟伟. 基于渗滤效应的水泥浆液多孔介质注浆机理及其工程应用[D]. 济南: 山东大学, 2014.
    (HAN Wei-wei.Grouting mechanism based on filtration in porous media with cement grout and its engineering application[D]. Jinan: Shandong University, 2014. (in Chinese))
    [13] YOON J, MOHTAR C S E. A filtration model for evaluating maximum penetration distance of bentonite grout through granular soils[J]. Computers and Geotechnics, 2015, 65: 291-301.
    [14] 李鹏, 张庆松, 张霄, 等. 基于模型试验的劈裂注浆机制分析[J]. 岩土力学, 2014, 35(11): 3221-3230.
    (LI Peng, ZHANG Qing-song, ZHANG Xiao, et al.Analysis of fracture grouting mechanism based on model test[J]. Rock and Soil Mechanics, 2014, 35(11): 3221-3230. (in Chinese))
    [15] 张伟杰, 李术才, 魏久传, 等. 三维注浆模型试验系统研制及应用[J]. 岩土力学, 2016, 37(3): 902-911.
    (ZHANG Wei-jie, LI Shu-cai, WEI Jiu-chuan, et al.Development of a 3D grouting model test system and its application[J]. Rock and Soil Mechanics, 2016, 37(3): 902-911. (in Chinese))
    [16] 张伟杰, 李术才, 魏久传, 等. 富水破碎岩体帷幕注浆模型试验研究[J]. 岩土工程学报, 2015, 37(9): 1627-1634.
    (ZHANG Wei-jie, LI Shu-cai, WEI Jiu-chuan, et al.Model tests on curtain grouting in water-rich broken rock mass[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(9): 1627-1634. (in Chinese))
    [17] 张忠苗, 邹健, 贺静漪, 等. 黏土中压密注浆及劈裂注浆室内模拟试验分析[J]. 岩土工程学报, 2009, 31(12): 1818-1824.
    (ZHANG Zhong-miao, ZOU Jian, JIA Jing-yi, et al.Laboratory tests on compaction grouting and fracture grouting of clay[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(12): 1818-1824. (in Chinese))
    [18] GB/T 50145-2007 土的工程分类标准[S]. 2007.
    (GB/T 50145-2007 Standard engineering classification of soil[S]. 2007. (in Chinese))
  • 期刊类型引用(4)

    1. 钟紫蓝,史跃波,李锦强,赵密,杜修力. 考虑土体动力特征参数相关性的工程场地随机地震反应分析. 岩土力学. 2022(07): 2015-2024+2033 . 百度学术
    2. 闫静茹,张郁山,阚文亮. 地震动场地调整系数研究. 地震学报. 2022(05): 783-796 . 百度学术
    3. 李平,周楷,刘应慈,李玉影,朱胜. 场地抗震分类方法对比研究——以松原场地为例. 防灾科技学院学报. 2021(02): 39-45 . 百度学术
    4. 周勇,丁海平,于彦彦. 基于反演基岩加速度的场地放大系数的探讨. 苏州科技大学学报(工程技术版). 2020(03): 1-5 . 百度学术

    其他类型引用(5)

计量
  • 文章访问数:  337
  • HTML全文浏览量:  13
  • PDF下载量:  178
  • 被引次数: 9
出版历程
  • 收稿日期:  2018-01-21
  • 发布日期:  2019-04-24

目录

    /

    返回文章
    返回