• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

石英砂掺量对膨润土-砂混合物泥浆样干缩开裂的控制机制

张虎元, 谭煜, 何东进, 张国超

张虎元, 谭煜, 何东进, 张国超. 石英砂掺量对膨润土-砂混合物泥浆样干缩开裂的控制机制[J]. 岩土工程学报, 2019, 41(2): 277-285. DOI: 10.11779/CJGE201902005
引用本文: 张虎元, 谭煜, 何东进, 张国超. 石英砂掺量对膨润土-砂混合物泥浆样干缩开裂的控制机制[J]. 岩土工程学报, 2019, 41(2): 277-285. DOI: 10.11779/CJGE201902005
ZHANG Hu-yuan, TAN Yu, HE Dong-jin, ZHANG Guo-chao. Influence mechanism of quartz sand content on drying shrinkage and crack of paste-like bentonite-sand mixtures as buffer/backfill materials[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(2): 277-285. DOI: 10.11779/CJGE201902005
Citation: ZHANG Hu-yuan, TAN Yu, HE Dong-jin, ZHANG Guo-chao. Influence mechanism of quartz sand content on drying shrinkage and crack of paste-like bentonite-sand mixtures as buffer/backfill materials[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(2): 277-285. DOI: 10.11779/CJGE201902005

石英砂掺量对膨润土-砂混合物泥浆样干缩开裂的控制机制  English Version

基金项目: 国家自然科学基金项目(41672261); 中央高校基本科研业务费专项项目(lzujbky-2016-k15,lzujbky-2017-ct02)
详细信息
    作者简介:

    张虎元(1963- ),男,博士,教授,主要从事与废弃物处置有关的环境岩土工程方面的教学与研究工作。E-mail: zhanghuyuan@lzu.edu.cn。

Influence mechanism of quartz sand content on drying shrinkage and crack of paste-like bentonite-sand mixtures as buffer/backfill materials

  • 摘要: 高放废物地质处置工程中,膨润土-砂混合物作为缓冲回填材料的干缩开裂特征对工程屏障的安全性有重要影响。以混合型缓冲回填材料为研究对象,分别制备掺砂率为0%~50%膨润土-砂的浆状试样,通过室内恒温干燥试验,研究混合物的干缩开裂特征。结果表明:当掺砂率小于30%时,混合物的收缩曲线与径向应变曲线均基本重合,石英砂悬浮在膨润土中,混合物的干缩开裂特性由膨润土决定;当掺砂率大于30%时,混合物中石英砂逐渐相互接触,增加了颗粒间的摩擦力且有大孔隙形成,进而能够抑制混合物的干缩开裂。石英砂颗粒的相互接触显著提高了混合物进气值,略微提高了缩限,限制了混合物的干燥收缩。大孔隙的形成导致毛细水作用力的降低;颗粒间摩擦力的增加,增强了混合物抵抗断裂的能力,进而抑制了混合物干燥裂隙的发展。最终确定了抑制膨润土-砂混合物干缩开裂的最低掺砂率为30%。
    Abstract: The shrinkage and crack characteristics of bentonite-sand mixtures as buffer/backfill materials play an important role in the security of high-level radioactive waste (HLW) geological disposal. In this investigation, the paste-like bentonite-sand mixtures with sand ratios of 0% to 50% in dry mass are prepared and subjected to indoor thermostatic drying in order to study their volumetric shrinkage and desiccated crack behaviors. The tests results indicate that when the sand ratio is less than 30%, the soil shrinkage characteristic curves (SSCC) and radial shrinkage strain curves are almost identical, respectively, indicating that the shrinkage and crack characteristics of the mixtures are dominated by bentonite because sand particles are suspended in bentonite powders without interaction. When the sand ratio is larger than 30%, the sand particles gradually contact to increase friction, and larger pores are formed by sand mixing, a phenomenon which restrains the shrinkage and crack development of the paste-like mixtures. The amount of air entry remarkably increases, and the shrinkage limit slightly increases because of the increased contact of sand particles, indicating the restraint of shrinkage of bentonite. Larger pores weaken the capillary force, and a higher fraction reinforces the cap ability of the mixtures to resist fractures, a phenomenon which directly restrains the extension of drying cracks. The minimum sand ratio to restrain shrinkage and desiccated crack propagations of the paste-like bentonite-sand mixtures is 30%.
  • [1] WANG J, SU R, CHEN W M, et al.Deep geological disposal of high-level radioactive wastes in China[J]. Chinese Journal of Rock Mechanics and Engineering, 2006, 25(4): 649-658.
    [2] SANDEN T, NILSSON U, ANDERSSON L.Investigation of parameters influencing bentonite block quality[R]. Swedish: Svensk Kulling Boskap, 2016: 16-22.
    [3] 唐朝生, 施斌, 崔玉军. 高放废物地质处置库中缓冲回填材料的收缩特征[J]. 岩土工程学报, 2012, 34(7): 1192-1200.
    (TANG Chao-sheng, SHI Bin, CUI Yu-jun.Shrinkage characteristics of buffer-backfilling materials in high-level radioactive waste geological disposal[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(7): 1192-1200. (in Chinese))
    [4] UDAY K V, SINGH D N.Investigation on cracking characteristics of fine-grained soils under varied environmental conditions[J]. Drying Technology, 2013, 31(11): 1255-1266.
    [5] DIXON D, CHANDLER N, GRAHAM J, et al.Two large-scale sealing tests conducted at Atomic Energy of Canada's underground research laboratory: the buffer- container experiment and the isothermal test[J]. Canadian Geotechnical Journal, 2002, 39(3): 503-518.
    [6] TAY Y Y, STEWART D I, COUSENS T W.Shrinkage and desiccation cracking in bentonite-sand landfill liners[J]. Engineering Geology, 2001, 60(1): 263-274.
    [7] BIRLE E, HEYER D, VOGT N.Influence of the initial water content and dry density on the soil-water retention curve and the shrinkage behavior of a compacted clay[J]. Acta Geotechnica, 2008, 3(3): 191-200.
    [8] SRIDHARAN A, PRAKASH K.Shrinkage limit of soil mixtures[J]. Geotechnical Testing Journal, 2000, 23(1): 3-8.
    [9] EMIROĞLU M, YALAMA A, ERDOĞDU Y. Performance of ready-mixed clay plasters produced with different clay/sand ratios[J]. Applied Clay Science, 2015, 115: 221-229.
    [10] PRAKASHA K S, CHANDRASEKARAN V S.Behavior of marine sand-clay mixtures under static and cyclic triaxial shear[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2005, 131(2): 213-222.
    [11] ZHOU L, ZHANG H Y, YAN M, et al.Laboratory determination of migration of Eu (III) in compacted bentonite-sand mixtures as buffer/backfill material for high-level waste disposal[J]. Applied Radiation and Isotopes, 2013, 82: 139-144.
    [12] 叶为民, 潘虹, 王琼, 等. 自由膨胀条件下高压实砂-膨润土混合物非饱和渗透特征[J]. 岩土工程学报, 2011, 33(6): 869-874.
    (YE Wei-min, PAN Hong, WANG Qiong, et al.Unsaturated permeability of highly compacted sand-bentonite mixtures under unconfined conditions[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(6): 869-874. (in Chinese))
    [13] 张虎元, 刘吉胜, 崔素丽, 等. 石英砂掺量对混合型缓冲回填材料抗剪强度的控制机制[J]. 岩石力学与工程学报, 2010, 29(12): 2533-2542.
    (ZHANG Hu-yuan, LIU Ji-sheng, CUI Su-li, et al.Controlling mechanism of quartz sand content on shear strength of bentonite-sand mixtures as buffer/backfill material[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(12): 2533-2542. (in Chinese))
    [14] 孙发鑫, 陈正汉, 秦冰, 等. 高庙子膨润土-砂混合料的三向膨胀力特性[J]. 岩石力学与工程学报, 2013, 32(1): 200-207.
    (SUN Fa-xin, CHEN Zheng-han, QIN Bing, et al.Characteristics of three-dimensional swelling pressure of Gaomiaozi bentonite-sand mixture[J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32(1): 200-207. (in Chinese))
    [15] CUI S L, ZHANG H Y, ZHANG M.Swelling characteristics of compacted GMZ bentonite-sand mixtures as a buffer/backfill material in China[J]. Engineering Geology, 2012, 141: 65-73.
    [16] 叶为民, 王琼, 潘虹, 等. 高压实高庙子膨润土的热传导性能[J]. 岩土工程学报, 2010, 32(6): 821-826.
    (YE Wei-min, WANG Qiong, PAN Hong, et al.Thermal conductivity of compacted GMZ01 bentonite[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(6): 821-826. (in Chinese))
    [17] ZHANG H Y, CUI S L, ZHANG M, et al.Swelling behaviors of GMZ bentonite-sand mixtures inundated in NaCl-Na2SO4 solutions[J]. Nuclear Engineering and Design, 2012, 242: 115-123.
    [18] KOMINE H.Theoretical equations on hydraulic conductivities of bentonite-based buffer and backfill for underground disposal of radioactive wastes[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2008, 134(4): 497-508.
    [19] 刘平, 张虎元, 严耿升, 等. 土建筑遗址表部土体收缩特征曲线测定[J]. 岩石力学与工程学报, 2010, 29(4): 842-849.
    (LIU Ping, ZHANG Hu-yuan, YAN Geng-sheng, et al.Determination of soil shrinkage characteristic curve of surface soil on ancient earthen architectures[J]. Chinese Journal of Rock Mechanics and Engineering, 2006, 29(4): 842-849. (in Chinese))
    [20] SL237—1999 土工试验规程[S]. 1999. (SL237—1999 Specification of soil test[S]. 1999. (in Chinese))
    [21] GROENEVELT P H, GRANT C D.Analysis of soil shrinkage data[J]. Soil and Tillage Research, 2004, 79(1): 71-77.
    [22] CORNELIS W M, CORLUY J, MEDINA H, et al.Measuring and modelling the soil shrinkage characteristic curve[J]. Geoderma, 2006, 137(1): 179-191.
    [23] 唐朝生, 崔玉军, ANH M, 等. 土体干燥过程中的体积收缩变形特征[J]. 岩土工程学报, 2011, 33(8): 1271-1279.
    (TANG Chao-sheng, CUI Yu-jun, ANH M, et al.Volumetric shrinkage characteristics of soil during drying[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(8): 1271-1279. (in Chinese))
    [24] GROENEVELT P H, BOLT G H.Water retention in soil[J]. Soil Science, 1972, 113(4): 238-245.
    [25] GROENEVELT P H, GRANT C D.Re-evaluation of the structural properties of some British swelling soils[J]. European Journal of Soil Science, 2001, 52(3): 469-477.
    [26] CORNELIS W M, CORLUY J, MEDINA H, et al.A simplified parametric model to describe the magnitude and geometry of soil shrinkage[J]. European Journal of Soil Science, 2006, 57(2): 258-268.
    [27] MORRIS P H, GRAHAM J, WILLIAMS D J.Cracking in drying soils[J]. Canadian Geotechnical Journal, 1992, 29(2): 263-277
    [28] 郑少河, 金剑亮, 姚海林, 等. 地表蒸发条件下的膨胀土初始开裂分析[J]. 岩土力学, 2006, 27(12): 2229-2233.
    (ZHENG Shao-he, JIN Jianliang, YAO Hai-lin, et al.Analysis of initial cracking behavior of expansive soil due to evaporation[J]. Rock and Soil Mechanics, 2006, 27(12): 2229-2233. (in Chinese))
    [29] PRIKRYL R, WEISHAUPTOVA Z.Hierarchical porosity of bentonite-based buffer and its modification due to increased temperature and hydration[J]. Applied Clay Science, 2010, 47(1): 163-170.
    [30] 唐朝生, 施斌, 崔玉军. 土体干缩裂隙的形成发育过程及机理[J].岩土工程学报, 2018, 40(8): 1415-1423.
    (TANG Chao-sheng, SHI Bin, CUI Yu-jun.Soil desiccation cracking behavior and mechanisms[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(8): 1415-1423. (in Chinese))
    [31] WANG J J, HUANG S Y, HU J F.Mode II fracture toughness of a clay mixed with sand[J]. Engineering Fracture Mechanics, 2016, 165: 19-23.
  • 期刊类型引用(5)

    1. 丁选明,方华强,刘汉龙,蒋春勇,李根峰. 纤维改性珊瑚泥裂隙动态演化规律试验研究. 岩土工程学报. 2023(09): 1801-1812 . 本站查看
    2. 成浩,王佳,陈忠云,李白云,冷九洲,熊高亮. 南方湿热地区高液限残积土干燥收缩特性及收缩动力学模型研究. 公路. 2023(11): 252-259 . 百度学术
    3. 叶云雪,韩仲,邹维列,王东星,吴珺华. 基于土水特征试验估算重塑黏性土的缩限. 岩石力学与工程学报. 2022(S2): 3380-3389 . 百度学术
    4. 黄兰华,赵宁宁,戴承江,梅绪哲,刘瑾,王梓. 黄原胶复合掺砂黏性土抗裂性能及其机理研究. 河北工程大学学报(自然科学版). 2022(03): 23-29 . 百度学术
    5. 汪时机,骆赵刚,李贤,文桃. 考虑局部含水率效应的浅层土体开裂过程与力学机制分析. 岩土力学. 2021(05): 1395-1403 . 百度学术

    其他类型引用(9)

计量
  • 文章访问数:  375
  • HTML全文浏览量:  9
  • PDF下载量:  185
  • 被引次数: 14
出版历程
  • 收稿日期:  2017-12-11
  • 发布日期:  2019-02-24

目录

    /

    返回文章
    返回