土心墙堆石坝坝顶裂缝扩展有限元模拟
Numerical simulation of crest cracks in an earth core rockfill dam using extended finite element method
-
摘要: 基于ABAQUS计算平台,采用扩展有限元方法对某土心墙堆石坝坝顶裂缝的发生及扩展情况进行了模拟,针对含初始裂缝的简化平面有限元计算模型,得到了以下结论:坝顶裂缝的产生原因主要是上下游的不协调变形,上游坝壳的湿化变形会加剧此不协调变形;坝顶裂缝多出现在心墙下游侧,其扩展的方向为朝下游侧且与水平面呈45°左右夹角,初始裂缝的长度对裂缝扩展方向影响较小;开发编制了求裂纹扩展长度及开度的插件,以靠近心墙中心的初始裂缝为例,在库水压力及湿化作用下,裂缝扩展的平均长度为2.5 m,裂缝平均张开距离为0.18 m;初始裂缝越靠近心墙中部,裂缝扩展长度及开度越大。设计及施工中在加强接触部位碾压质量的同时应注重坝顶心墙中部的压实质量以减小坝顶裂缝发生的危害。Abstract: The extended finite element method combined in ABAQUS software is used to simulate the propagation of crest cracks of an earth core rockfill dam. For the simplified plane FEM model with initial cracks, the conclusions are obtained as follows: the main reason leading to the crest cracks is the uncoordinated deformation, and the effects of wetting deformation aggravate the uncoordinated deformation. The dam crest cracks are mostly distributed at the downstream side of core wall, and the direction is toward the downstream side within a certain depth and with about 45° to the horizontal surface. Besides, the initial length has little influences on the propagation direction of cracks. A plug-in for calculating the length and opening of the crack is compiled. Taking the crack closer to the center of core wall for an instance, the average propagation length of cracks is 2.5 m, and the average opening distance is 0.18 m. The closer the initial crack is to the center of the core wall, the larger the length and the opening of the cracks are. It is recommended that the quality of the middle part of dam core should be guaranteed during the design and construction periods.