• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

基于沉降控制的组合后压浆灌注桩承载力计算研究

戴国亮, 万志辉, 龚维明, 王磊

戴国亮, 万志辉, 龚维明, 王磊. 基于沉降控制的组合后压浆灌注桩承载力计算研究[J]. 岩土工程学报, 2018, 40(12): 2172-2181. DOI: 10.11779/CJGE201812003
引用本文: 戴国亮, 万志辉, 龚维明, 王磊. 基于沉降控制的组合后压浆灌注桩承载力计算研究[J]. 岩土工程学报, 2018, 40(12): 2172-2181. DOI: 10.11779/CJGE201812003
DAI Guo-liang, WAN Zhi-hui, GONG Wei-ming, WANG Lei. Calculation of bearing capacity for combined post-grouting bored piles based on settlement control[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(12): 2172-2181. DOI: 10.11779/CJGE201812003
Citation: DAI Guo-liang, WAN Zhi-hui, GONG Wei-ming, WANG Lei. Calculation of bearing capacity for combined post-grouting bored piles based on settlement control[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(12): 2172-2181. DOI: 10.11779/CJGE201812003

基于沉降控制的组合后压浆灌注桩承载力计算研究  English Version

基金项目: 国家自然科学基金项目(51478109,51678145); 国家重点研发计划专项项目(2017YFC0703408); “六大人才高峰”高层次人才选拔培养资助项目(XNY-047)
详细信息
    作者简介:

    戴国亮(1975- ),男,博士,教授,博士生导师,主要从事岩土工程教学和科研工作。E-mail:daigl@seu.edu.cn。

  • 中图分类号: TU473

Calculation of bearing capacity for combined post-grouting bored piles based on settlement control

  • 摘要: 以沉降控制标准为原则来确定后压浆灌注桩的承载力有着重要的实际意义。基于石首长江公路大桥工程开展的6根大直径钻孔灌注桩现场静载试验,通过对比分析桩端桩侧组合压浆桩压浆前后的试验结果,研究了组合后压浆对深厚细砂层钻孔灌注桩承载变形性状的影响,在此基础上通过统计得出了在不同桩顶沉降条件下桩端阻力增强系数、桩侧阻力增强系数的取值范围,并给出了一种基于沉降控制标准的组合后压浆桩承载力设计方法,最后通过工程实例验证了该设计方法的合理性。结果表明,组合后压浆条件下的深厚细砂层钻孔灌注桩承载变形性能显著提升,且承载力提高幅度随着桩顶沉降的增加逐渐增大;组合后压浆桩加载至极限状态时,其极限承载力至少提高66%,且能有效地控制桩基沉降量;同时组合压浆后能有效地改善桩端支承性能与桩侧受力特性,显著提高桩端阻力和桩侧摩阻力,并对桩基的荷载传递特性产生明显影响。此外,设计计算方法能较好地给出组合后压浆桩荷载沉降关系的范围,可保守地将计算结果的下限作为工程设计使用。
    Abstract: It is of great practical significance to determine the bearing capacity of post-grouting piles on the basis of the principle of settlement control. Based on the field static load tests on six large-diameter cast-in-situ bored piles of Shishou Yangtze River Highway Bridge project, the influences of combined post-grouting on the bearing and deformation behaviors of cast-in-situ bored piles in deep fine sand layer are studied by comparing the field test results before and after combined post-grouting. The range of improvement coefficient for the tip resistance and shaft resistance under different pile head settlements is obtained through statistical analysis on the basis of the field test results, and a design method for the bearing capacity of combined post-grouting pile based on settlement control criterion is presented. Finally, a case history is cited to demonstrate the validity of the design method. The results show that the bearing capacity of cast-in-situ bored pile in deep fine sand layer is significantly improved under the combined post-grouting, and the improved range of bearing capacity increases with the increasing settlement of the pile head. Moreover, the ultimate bearing capacity of combined post-grouting pile is increased by at least 66% under the ultimate loading, and the settlement of pile head can be controlled effectively. Meanwhile, the bearing performances of the pile tip and mechanical characteristics of the pile side can be improved effectively, the tip resistance and side resistance are significantly improved by the combined post-grouting, and the load transfer characteristics of the pile have a significant impact. Additionally, the proposed method can well give the range of load-settlement relationship of combined post-grouting pile. It is suggested that the calculated lower bound should be used conservatively in engineering design.
  • [1] 张忠苗. 灌注桩后注浆技术及工程应用[M]. 北京: 中国建筑工业出版社, 2009.
    (ZHANG Zhong-miao.Post-grouting technology of bored piles and engineering application[M]. Beijing: China Architecture & Building Press, 2009. (in Chinese))
    [2] MULLINS G, WINTERS D, STEVEN D.Predicting end bearing capacity of post-grouted drilled shaft in cohesioniess soils[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2006, 132(4): 478-487.
    [3] 张建新, 吴东云. 桩端阻力与桩侧阻力的相互作用研究[J]. 岩土力学, 2008, 29(2): 541-544.
    (ZHANG Jian-xin, WU Dong-yun.Research on interaction between resistance at pile and lateral resistance of pile[J]. Rock and Soil Mechanics, 2008, 29(2): 541-544. (in Chinese))
    [4] 张忠苗, 邹健, 刘俊伟, 等. 桩端后注浆浆液上返高度的理论研究[J]. 岩土力学, 2010, 31(8): 2535-2540.
    (ZHANG Zhong-miao, ZOU Jian, LIU Jun-wei, et al.Theoretical study of climbing height of grout in pile-bottom base grouting[J]. Rock and Soil Mechanics, 2010, 31(8): 2535-2540. (in Chinese))
    [5] 李永辉, 朱翔, 周同和. 桩端后注浆对大直径灌注桩影响的现场对比试验研究[J]. 岩土力学, 2016, 37(增刊2): 388-396.
    (LI Yong-hui, ZHU Xiang, ZHOU Tong-he.Experimental study of effects of pile tip post grouting on bearing characteristics of large-diameter bored pile[J]. Rock and Soil Mechanics, 2016, 37(S2): 388-396. (in Chinese))
    [6] 黄生根, 张晓炜, 曹辉. 后压浆钻孔灌注桩的荷载传递机理研究[J]. 岩土力学, 2004, 25(2): 251-254.
    (HUANG Sheng-gen, ZHANG Xiao-wei, CAO Hui.Mechanism study on bored cast-in-place piles with post-grouting technology[J]. Rock and soil Mechanics, 2004, 25(2): 251-254. (in Chinese))
    [7] 刘念武, 龚晓南, 俞峰. 大直径钻孔灌注桩的竖向承载性能[J]. 浙江大学学报(工学版), 2015, 49(4): 763-768.
    (LIU Nian-wu, GONG Xiao-nan, YU Feng.Vertical bearing capacity of large-diameter bored pile[J]. Journal of Zhejiang University (Engineering Science), 2015, 49(4): 763-768. (in Chinese))
    [8] BRUCE D A.Enhancing the performance of large diameter piles by grouting[J]. Ground Engineering, 1986, 19(4): 9-15.
    [9] DUAN X, KULHAWY F H.Tip post-grouting of slurry-drilled shafts in soil: Chinese experiences[C]// Contemporary Topics in Deep Foundations, ASCE. Orlando, 2009: 47-54.
    [10] DAI G, GONG W, ZHAO X, et al.Static testing of pile-base post-grouting piles of the Suramadu bridge[J]. Geotechnical Testing Journal, 2010, 34(1): 34-49.
    [11] THIYYAKKANDI S, MCVAY M, BLOOMQUIST D, et al.Experimental study, numerical modeling of and axial prediction approach to base grouted drilled shafts in cohesionless soils[J]. Acta Geotechnica, 2014, 9(3): 439-454.
    [12] 王卫东, 吴江斌, 王向军. 桩侧注浆抗拔桩的试验研究与工程应用[J]. 岩土工程学报, 2010, 32(增刊2): 284-289.
    (WANG Wei-dong, WU Jiang-bin, WANG Xiang-jun.Full-scale tests and application of side-grouting uplift piles[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(S2): 284-289. (in Chinese))
    [13] 王卫东, 吴江斌, 王向军, 等. 桩侧后注浆抗拔桩技术的研究与应用[J]. 岩土工程学报, 2011, 33(增刊2): 437-445.
    (WANG Wei-dong, WU Jiang-bin, WANG Xiang-jun, et al.Study and application of side-grouting uplift piles[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(S2): 437-445. (in Chinese))
    [14] 钱建固, 马宵, 李伟伟, 等. 桩侧注浆抗拔桩离心模型试验与原位测试分析[J]. 岩土力学, 2014, 35(5): 1241-1246.
    (QIAN Jian-gu, MA Xiao, LI Wei-wei, et al.Centrifuge model test and in-situ observation on behavior of side-grouting uplift pile[J]. Rock and Soil Mechanics, 2014, 35(5): 1241-1246. (in Chinese))
    [15] 李洪江, 童立元, 刘松玉, 等. 后注浆超长灌注桩水平承载特性现场试验研究[J]. 建筑结构学报, 2016, 37(6): 204-211.
    (LI Hong-jiang, TONG Li-yuan, LIU Song-yu, et al.Experimental study on lateral bearing behavior of post-grouting super-long bored pile[J]. Journal of Building Structures, 2016, 37(6): 204-211. (in Chinese))
    [16] 房凯, 张忠苗, 刘兴旺. 基于沉降标准的卵砾石层后注浆桩承载力预测[J]. 岩石力学与工程学报, 2012, 31(6): 1178-1183.
    (FANG Kai, ZHANG Zhong-miao, LIU Xing-wang.Prediction of bearing capacity of post grouting pile in gravel layer based on settlement criterion[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(6): 1178-1183. (in Chinese))
    [17] 戴国亮, 万志辉. 后压浆桩增强效应作用机制及荷载沉降关系研究[J]. 岩土工程学报, 2017, 39(12): 2235-2244.
    (DAI Guo-liang, WAN Zhi-hui.Study on enhanced mechanism and load settlement relationship of post grouting pile[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(12): 2235-2244. (in Chinese))
    [18] JGJ/T 403—2017 建筑基桩自平衡静载试验技术规程[S]. 2017.
    (JGJ/T 403—2017 Technical specification for static loading test of self-balanced method of building foundation piles[S]. 2017. (in Chinese))
    [19] WAN Z, DAI G, GONG W.Full-scale load testing of two large-diameter drilled shafts in coral-reef limestone formations[J]. Bulletin of Engineering Geology and Environment, 2017(10): 1-17.
    [20] 张帆, 龚维明, 戴国亮. 大直径超长灌注桩荷载传递机理的自平衡试验研究[J]. 岩土工程学报, 2006, 28(4): 464-469.
    (ZHANG Fan, GONG Wei-ming, DAI Guo-liang.Experimental research on the load transfer mechanism of super-long large diameter bored pile with the self-balanced load test method[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(4): 464-469. (in Chinese))
    [21] O’NEILL M W. Side resistance in piles and drilled shafts[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2001, 127(1): 1-16.
    [22] 万志辉, 戴国亮, 龚维明, 等. 基于自平衡法后压浆灌注桩荷载传递函数的变化分析[J]. 土木工程学报, 2017, 50(8): 98-104.
    (WAN Zhi-hui, DAI Guo-liang, GONG Wei-ming, et al.Analysis on the load transfer function of post-grouting bored pile based on self-balanced method[J]. China Civil Engineering Journal, 2017, 50(8): 98-104. (in Chinese))
    [23] 杨敏. 基于变形控制设计原则的减少沉降桩基础研究[J]. 岩土工程学报, 2000, 22(4): 481-486.
    (YANG Min.Study of reducing settlement pile foundation based on controlling settlement principle[J]. Chinese Journal of Geotechnical Engineering, 2000, 22(4): 481-486. (in Chinese))
    [24] 龚维明, 戴国亮. 桩承载力自平衡测试技术研究与应用[M]. 北京: 中国建筑工业出版社, 2015.
    (GONG Wei-ming, DAI Guo-liang.Research and application of self-balanced loading test technique for pile bearing capacity[M]. Beijing: China Architecture & Building Press, 2015. (in Chinese))
计量
  • 文章访问数:  337
  • HTML全文浏览量:  5
  • PDF下载量:  232
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-11-19
  • 发布日期:  2018-12-24

目录

    /

    返回文章
    返回