初始静态压应力场中爆生裂纹的扩展行为
Evolution of blasting cracks in different static compression fields
-
摘要: 深部岩体爆破致裂是初始静态应力场和爆炸动态载荷双重叠加作用结果,爆生裂纹的扩展路径、行为特征等受初始静态应力场的影响。采用数字激光焦散线试验系统,进行了静态竖向载荷分别为0,2,4 MPa 3种不同初始压应力作用下的倾斜爆生裂纹扩展规律试验,对比分析了裂纹的运动学和力学行为。试验结果表明:随着初始压应力p的增大,爆生主裂纹的扩展方向逐渐向主应力方向偏转,且爆生主裂纹的扩展总时间逐渐减小,试件的Ⅱ型破坏愈加显著;随着初始压应力p的增大,爆生主裂纹的最大偏转角度也明显随之增大,初始压应力p是爆生主裂纹产生垂直预制裂纹方向速度的动因。研究结果揭示了爆生裂纹扩展行为与初始静态应力场的关系,丰富了深部岩体爆破破坏理论。Abstract: The blasting-induced fracture of deep underground rock is the main problem in rock blasting, which is commonly subjected to the dynamic loads induced by blasting under high in-situ static stresses. The high static stress fields have great influences on the fracturing behaviors of propagating cracks. The digital-laser dynamic caustics system is utilized in the blasting fracturing tests, in which the PMMA specimen undergoes three kinds of vertical static stresses (0, 2 and 4 MPa, respectively) with the same total charges. Using the theory of fracture mechanics, the mechanism of fracture and propagation behaviors of cracks is analyzed. The results indicate that the propagation direction of the main crack gradually deflects to the direction of the principal stress, the total propagation time of the main crack decreases gradually, the type II test failure is more remarkable, and the maximum deflection angle of the main crack also significantly increases along with the increase of the initial static compression. The relationship between the static compression stress field and the blast-induced cracks behavior is revealed, and the studies on rock blasting fragmentation theory are enriched.