• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

螺旋桩冻拔特性的模型试验研究

王腾飞, 刘建坤, 邰博文, 吕鹏

王腾飞, 刘建坤, 邰博文, 吕鹏. 螺旋桩冻拔特性的模型试验研究[J]. 岩土工程学报, 2018, 40(6): 1084-1092. DOI: 10.11779/CJGE201806014
引用本文: 王腾飞, 刘建坤, 邰博文, 吕鹏. 螺旋桩冻拔特性的模型试验研究[J]. 岩土工程学报, 2018, 40(6): 1084-1092. DOI: 10.11779/CJGE201806014
WANG Teng-fei, LIU Jian-kun, TAI Bo-wen, LÜ Peng. Model tests on frost jacking behaviors of helical steel piles[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(6): 1084-1092. DOI: 10.11779/CJGE201806014
Citation: WANG Teng-fei, LIU Jian-kun, TAI Bo-wen, LÜ Peng. Model tests on frost jacking behaviors of helical steel piles[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(6): 1084-1092. DOI: 10.11779/CJGE201806014

螺旋桩冻拔特性的模型试验研究  English Version

基金项目: 国家自然科学基金项目(41731281); 神朔铁路科技开发项目(2015-10)
详细信息
    作者简介:

    王腾飞(1990- ),男,博士研究生,主要从事冻土工程与交通岩土方面的研究工作。E-mail: knight_90@163.com。

    通讯作者:

    刘建坤,E-mail:jkliu@bjtu.edu.cn

Model tests on frost jacking behaviors of helical steel piles

  • 摘要: 寒季,季冻区光伏支架基础受地基土不均匀冻胀的影响,引起系统发电效率降低,甚至导致上部结构的整体破坏。因此,工程中常应用螺旋桩来抑制这种病害。通过进行单向冻结条件下的模型试验,考察多种螺旋桩及光滑桩的冻拔特性,总结温度分布、冻拔位移和轴向上拔力的变化规律。结果表明:①确定平均冻拔率ηj为表征抗冻拔能力的合理指标,其中半螺旋大叶片桩具有最小平均冻拔率(1.03%),全螺旋桩的平均冻拔率最高;②冻拔位移与冻深之间存在线性关系,螺旋叶片的布设影响冻拔发展;③限定桩竖向位移条件下,轴向上拔力与冻深之间存在指数关系。因此,研究成果可为季冻区轻荷载工程基础的抗冻拔措施提供参考。
    Abstract: The foundations of the photovoltaic frames suffer from uneven frost heave of the soils during cold seasons, triggering generation inefficiency or even the total failure of superstructures. As a result, the helical steel piles (HSP) are widely adopted to deal with frost diseases in engineering practices. A small scale experiment is conducted to assess the jacking behaviors of different helical piles and the piles with no helix exposed to unidirectional freexing. Then, the variation laws of the temperature, jacking displacement and axial uplift force are summarized. The results indicate: (1) The average frost jacking rate ηj is determined as the reasonable index in terms of anti-jacking ability. In this study, ηj of the large half-helix pile is the least, with the value of 1.03 %, and ηj of the multi-helix one is the largest; (2) There is a linear relationship between the jacking displacement and the frost depth, and the layout of helices has impact on the development of frost jacking; (3) With the vertical displacement of the pile restrained, the axial uplift force grows exponentially over the frost depth. Thus, the research results can provide reference to address the frost jacking problems of lightweight structures in seasonally frozen regions.
  • [1] 赵杰. 光伏发电并网系统的相关技术研究[D]. 天津: 天津大学, 2012: 1-3.
    (ZHAO Jie.Study on related technologies of grid-connected photovoltaic power system[D]. Tianjin: Tianjin University, 2012: 1-3. (in Chinese))
    [2] GUO L, XIE Y, YU Q, et al.Displacements of tower foundations in permafrost regions along the Qinghai-Tibet Power Transmission Line[J]. Cold Regions Science and Technology, 2016, 121: 187-195.
    [3] WANG T, LIU J, ZHAO H, et al.Experimental study on the anti-jacking-up performance of a screw pile for photovoltaic stents in a seasonal frozen region[J]. J Zhejiang Univ Sci A, 2016, 17(7): 512-524.
    [4] CHEVEREV V G, PUSTOVOIT G P, VIDYAPIN I Y, et al.Stabilization of tubular pile foundations in heaving soils[J]. Soil Mech Found Eng, 2006, 43(6): 211-227.
    [5] MOHAJERANI A, BOSNJAK D, BROMWICH D.Analysis and design methods of screw piles: a review[J]. Soils and Foundations, 2016, 56(1): 115-128.
    [6] KRASIŃSKI A. Numerical simulation of screw displacement pile interaction with non-cohesive soil[J]. Archives of Civil and Mechanical Engineering, 2014, 14(1): 122-133.
    [7] 董天文, 梁力, 黄连壮, 等. 螺旋桩基础抗拔试验研究[J]. 岩土力学, 2009, 30(1): 186-190.
    (DONG Tian-wen, LIANG Li, HUANG Lian-zhuang, et al.Pullout test of screw pile foundation[J]. Rock and Soil Mechanics, 2009, 30(1): 186-190. (in Chinese))
    [8] TSUHA C H C, DOS SANTOS FILHO J M S M, SANTOS T C. Helical piles in unsaturated structured soil: a case study[J]. Canadian Geotechnical Journal, 2016, 53: 103-117.
    [9] SAKR M.Performance of helical piles in oil sand[J]. Canadian Geotechnical Journal, 2009, 46(8): 1046-1061.
    [10] LI N, XU B.A new type of pile used in frozen soil foundation[J]. Cold Reg Sci Technol, 2008, 53(3): 355-368.
    [11] GAVIN K, DOHERTY P, TOLOOIYAN A.Field investigation of the axial resistance of helical piles in dense sand[J]. Canadian Geotechnical Journal, 2014, 51(11): 1343-1354.
    [12] GU Q, YANG Z, PENG Y.Parameters affecting laterally loaded piles in frozen soils by an efficient sensitivity analysis method[J]. Cold Reg Sci Technol, 2016, 121: 42-51.
    [13] CHEN G S, DUANE D, HULSEY J L.Measurement of frozen soil-pile dynamic properties: a system identification approach[J]. Cold Reg Sci Technol, 2012, 70: 98-106.
    [14] 陈然. 螺旋桩在季节性冻土场地抗冻拔性能分析[D]. 哈尔滨: 哈尔滨工业大学, 2010: 3-20.
    (CHEN Ran.Study on anti-frost heaving characteristic of the screw piles in the seasonal frozen region[D]. Harbin: Harbin Institute of Technology, 2010: 3-20. (in Chinese))
    [15] 王腾飞, 刘建坤, 刘晓强, 等. 季节冻土区光伏支架螺旋桩基的冻胀数值分析研究[J]. 冰川冻土, 2016, 38(4): 1167-1174.
    (WANG Teng-fei, LIU Jian-kun, LIU Xiao-qiang, et al.Numerical simulation on anti-jacking-up performance of helical piles of photovoltaic stents in seasonal frozen region[J]. Journal of Glaciology and Geocryology, 2016, 38(4): 1167-1174. (in Chinese))
    [16] 董天文, 梁力, 王明恕, 等. 极限荷载条件下螺旋桩的螺距设计与承载力计算[J]. 岩土工程学报, 2006, 28(11): 2031-2034.
    (DONG Tian-wen, LIANG Li, WANG Ming-shu, et al.Pitch of screws and bearing capacity of screw piles under ultimate load[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(11): 2031-2034. (in Chinese))
    [17] 董天文, 梁力. 竖向受压螺旋桩荷载沉降函数解[J]. 岩土工程学报, 2007, 29(10): 1483-1487.
    (DONG Tian-wen, LIANG Li.Solution of load-settlement function of single screw pile under axial pressure[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(10): 1483-1487. (in Chinese))
    [18] 田亚护, 刘建坤, 彭丽云. 动、静荷载作用下细粒土的冻胀特性试验研究[J]. 岩土工程学报, 2010, 32(12): 1882-1887.
    (TIAN Ya-hu, LIU Jian-kun, PENG Li-yun.Experimental study on frost action of fine-grained soils under dynamic and static loads[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(12): 1882-1887. (in Chinese))
    [19] 刘谌. 粉质黏土纯盐胀试验研究及经验模型分析[D]. 北京: 北京交通大学, 2016: 30-33.
    (LIU Chen.Investigation of the silty clay pure salt expansion and experience model[D]. Beijing: Beijing Jiaotong University, 2016: 30-33. (in Chinese))
    [20] 聂志红, 刘源, 王翔. 客运专线基床表层级配碎石冻胀影响因素的试验研究[J]. 铁道科学与工程学报, 2013, 10(4): 59-62.
    (NIE Zhi-hong, LIU Yuan, WANG Xiang.Experimental study on frozen-heave influence factors for graded gravel in surface layer of passenger dedicated line[J]. Journal of Railway Science and Engineering, 2013, 10(4): 59-62. (in Chinese))
    [21] CHONG Tang, KOK-KWANG Phoon.Model uncertainty of cylindrical shear method for calculating the uplift capacity of helical anchors in clay[J]. Engineering Geology, 2016, 207: 14-23.
    [22] AKILI W.Stress-strain behavior of frozen find-grained soils[J]. Highw Res Rec, 1971, 360: 1-8.
    [23] LIU Jian-kun, LÜ Peng, CUI Ying-hui, et al.Experimental study on direct shear behavior of frozen soil-concrete interface[J]. Cold Reg Sci Technol, 2014(104/105): 1-6.
    [24] 吕鹏, 刘建坤. 冻土与混凝土接触面直剪试验研究[J]. 铁道学报, 2015, 37(2): 106-110.
    (LÜ Peng, LIU Jian-kun.An experimental study on direct shear tests of frozen soil-concrete interface[J]. Journal of the China Railway Society, 2015, 37(2): 106-110. (in Chinese))
  • 期刊类型引用(22)

    1. 黄飞虎,裴彦飞,苏谦,王鑫,杨鸿麟,李艳东. 螺旋钢桩加固边坡抗滑承载特性研究. 铁道科学与工程学报. 2024(02): 578-590 . 百度学术
    2. 李绪勇,杨忠平,刘纲,李勇华,张益铭. 隔离式螺旋桩抗压承载与抗地基冻融特性. 岩土工程学报. 2024(06): 1187-1196 . 本站查看
    3. 车松阳,裴碧莹,徐洪俊. 螺旋桩室内模型试验设计及结果分析. 科技创新与应用. 2024(17): 68-71 . 百度学术
    4. 周亚龙,王旭,蒋代军,刘德仁,何菲,晏昌,牛富俊. 青藏铁路接触网异型桩基抗冻拔模型试验研究. 西南交通大学学报. 2024(03): 677-684 . 百度学术
    5. 孙铁成,杨逸,杨茜,董创奇. 开敞系统中冻土-混凝土界面抗拉强度试验研究. 石家庄铁道大学学报(自然科学版). 2024(02): 92-98 . 百度学术
    6. 郝冬雪,王磊,陈榕,莫凯强,孔纲强,高宇聪. 冻融循环下粉砂中螺旋锚抗拔稳定模型试验研究. 岩土工程学报. 2023(01): 57-65 . 本站查看
    7. 陈强,李驰,高利平. 基于图像处理技术水分迁移对光伏桩冻拔稳定性影响的试验研究. 太阳能学报. 2023(01): 49-54 . 百度学术
    8. 田天伦,苏安双,贾青,王淼. 光伏螺旋桩基抗冻拔数值模拟. 水利科学与寒区工程. 2023(03): 1-6 . 百度学术
    9. 吴炅,陈鹏飞,尹啸笛,郝洪策,梁成军. 桩体结构参数对螺旋桩-土冻胀性能的影响. 河南科学. 2023(07): 964-969 . 百度学术
    10. 张学礼,崔强,张树林. 冻土地基中锥管板条装配式基础抗拔承载性能试验研究. 地质科技通报. 2022(02): 335-342 . 百度学术
    11. 熊维林,葛洪林,富海鹰. 考虑非对称冻结的塔杆基础模型实验研究. 铁道科学与工程学报. 2022(04): 931-940 . 百度学术
    12. 王卫东,崔强,韩杨春,张树林,孟宪乔. 高寒地区输电线路锥管板条装配式基础抗冻拔性能试验研究. 防灾减灾工程学报. 2022(03): 542-552 . 百度学术
    13. 王超哲,吴进,王立兴,刘浩,杨紫健,吴文兵. 黏弹性地基中螺旋桩水平动力特性. 中南大学学报(自然科学版). 2022(06): 2279-2289 . 百度学术
    14. 杨朝旭,任刚,殷卫永,韩战涛,任文博,李佳佳. 钢管螺旋桩防护公路膨胀土高边坡工程应用. 公路. 2022(07): 41-48 . 百度学术
    15. 陈明伟,陈航杰. 桩型对冻土桩基冻胀特性的影响研究. 甘肃科技. 2022(09): 8-12 . 百度学术
    16. 黄旭斌,盛煜,黄龙,彭尔兴,曹伟,张玺彦,何彬彬. 单向冻结条件下扩底桩抗冻拔能力试验研究. 工程科学与技术. 2021(01): 122-131 . 百度学术
    17. 屈讼昭,郭咏华,王仪,张斌,张建明,孙清. 大锚片螺旋锚在粉质黏土中的下压承载性能. 土木与环境工程学报(中英文). 2021(05): 34-44 . 百度学术
    18. 高晓静,孙铁成,李晓康,廖一鸣. 冻结作用下粉土-混凝土接触面抗拉强度试验研究. 冰川冻土. 2020(02): 499-507 . 百度学术
    19. 黄旭斌,盛煜,黄龙,何彬彬,张玺彦. 季节冻土区扩底单桩受力性能研究进展与展望. 冰川冻土. 2020(04): 1220-1228 . 百度学术
    20. 王希云,邵康,苏谦,刘凯文,邹婷. 单叶片螺旋钢桩竖向承载特性数值分析. 铁道标准设计. 2019(07): 66-71 . 百度学术
    21. 王希云. 螺旋钢桩设计参数对抗压承载性能的影响研究. 路基工程. 2019(03): 57-61 . 百度学术
    22. 邵康,苏谦,刘凯文,李婷,周珩. 竖向受压下考虑安装扰动螺旋钢桩数值模拟分析与现场载荷试验. 岩石力学与工程学报. 2019(12): 2570-2581 . 百度学术

    其他类型引用(20)

计量
  • 文章访问数:  272
  • HTML全文浏览量:  6
  • PDF下载量:  200
  • 被引次数: 42
出版历程
  • 收稿日期:  2016-12-20
  • 发布日期:  2018-06-24

目录

    /

    返回文章
    返回