• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊

竖井抽水下垃圾填埋场渗滤液运移规律研究

柯瀚, 胡杰, 吴小雯, 孟猛

柯瀚, 胡杰, 吴小雯, 孟猛. 竖井抽水下垃圾填埋场渗滤液运移规律研究[J]. 岩土工程学报, 2018, 40(5): 786-793. DOI: 10.11779/CJGE201805002
引用本文: 柯瀚, 胡杰, 吴小雯, 孟猛. 竖井抽水下垃圾填埋场渗滤液运移规律研究[J]. 岩土工程学报, 2018, 40(5): 786-793. DOI: 10.11779/CJGE201805002
KE Han, HU Jie, WU Xiao-wen, MENG Meng. Investigation into leachate transport in MSW landfills under pumping of vertical wells[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(5): 786-793. DOI: 10.11779/CJGE201805002
Citation: KE Han, HU Jie, WU Xiao-wen, MENG Meng. Investigation into leachate transport in MSW landfills under pumping of vertical wells[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(5): 786-793. DOI: 10.11779/CJGE201805002

竖井抽水下垃圾填埋场渗滤液运移规律研究  English Version

详细信息
    作者简介:

    柯 瀚(1975- ),男,教授,博士生导师,主要从事基础工程和环境土工方面的教学和科研工作。E-mail: boske@126.com。

Investigation into leachate transport in MSW landfills under pumping of vertical wells

  • 摘要: 城市固废由于组成成分的多样性及分层填埋等原因,导致渗滤液运移存在明显的优先流及各向异性现象。在成都某填埋场开展多口竖井抽水及水位恢复试验,同时结合高密度电法技术(ERT)现场大尺度研究渗滤液分布及运移规律。多口竖井水位恢复试验显示填埋体内渗滤液运移具有明显的不均质性,表现为同一填埋场不同位置的竖井抽排性能差异较大,竖井周围垃圾渗透系数值分布范围为2.35×10-5~3.90×10-4 cm/s。竖井抽水下周围监测井的水位异常变化表明渗滤液补给存在明显优先流特征。ERT监测渗滤液抽水及回灌过程中堆体内电阻率变化,进一步揭示了现场渗流存在显著的各向异性和优先流特征,主要渗流路径与水平向呈0~30°。
    Abstract: Owing to the composition diversity of MSW and the compacted nature in landfills, the leachate transport in landfills is found to be dominated by the preferential flow and shows significant anisotropy (i.e., horizontal permeability higher than vertical one). The vertical well pumping and leachate level recovery tests are conducted at Chengdu landfill. Meanwhile, the leachate distribution and transportation characteristics are examined quantitatively and qualitatively using electrical resistivity tomography (ERT). Through the vertical well pumping and leachate level recovery tests, it is found that the leachate transport in landfills is highly heterogeneous. The performance of vertical wells at different regions of this landfill shows great difference, and the hydraulic conductivity of the surrounding waste ranges from 2.35×10-5 to 3.90×10-4 cm/s. The leachate levels in the surrounding monitoring wells change unusually under pumping of vertical wells. It is mainly due to the existence of preferential flow in the leachate transportation process. In addition, the monitoring results on changes of waste resistivity in the process of leachate pumping and recirculation by ERT further reveal that there are significant anisotropy and preferential flow characteristics in leachate transportation. And the angle between leachate seepage path and horizontal direction is found to be 0~30°.
  • [1] 陈云敏, 兰吉武, 李育超, 等. 垃圾填埋场渗滤液水位雍高及工程控制[J]. 岩石力学与工程学报, 2014, 33(1): 154-163. (CHEN Yun-min, LAN Ji-wu, LI Yu-chao, et al. Development and control of leachate mound in MSW landfills[J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(1): 154-163. (in Chinese))
    [2] ZHAN T L T, XU X B, CHEN Y M, et al. Dependence of gas collection efficiency on leachate level at wet landfills of municipal solid wastes and its improvement methods in China[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2015, 141(4): 1-11.
    [3] KOERNER R M, SOONG T Y. Leachate in landfills: the stability issues[J]. Geotextiles and Geomembranes, 2000, 18(5): 293-309.
    [4] 张文杰, 陈云敏. 垃圾填埋场抽水试验及降水方案设计[J]. 岩土力学, 2010, 31(1): 210-215. (ZHANG Wen-jie, CHEN Yun-min. Pumping tests and leachate drawdown design in a municipal solid waste landfill[J]. Rock and Soil Mechanics, 2010, 31(1): 210-215. (in Chinese))
    [5] 詹良通, 徐 辉, 兰吉武, 等. 填埋垃圾渗透特性室内外测试研究[J]. 浙江大学学报(工学版), 2014, 48(3): 478-486. (ZHAN Lang-tong, XU Hui, LAN Ji-wu, et al. Field and laboratory study on hydraulic conductivity of MSW[J]. Journal of Zhejiang University (Engineering Science), 2014, 48(3): 478-486. (in Chinese))
    [6] BURROWS M R. Landfill hydrogeology and the hydraulic properties of in situ landfilled material[D]. London: University of London, 1998.
    [7] ROSQVIST N H, DOLLAR L H, FOURIE A B. Preferential flow in municipal solid waste and implications for long-term leachate quality: valuation of laboratory-scale experiments[J]. Waste Management & Research, 2005, 23(4): 367-380.
    [8] WOODMAN N D. Modelling of transport in highly heterogeneous porous media, with application to the flushing of waste[D]. London: University College London, 2007.
    [9] 柯 瀚, 吴小雯, 张 俊, 等. 基于优势流及各向异性随上覆压力变化的填埋体饱和渗流模型[J]. 岩土工程学报, 2016, 38(11): 1957-1964. (KE Han, WU Xiao-wen, ZHANG Jun, et al. Modeling saturated permeability of municipal solid waste basing on the compression changes of its preferential flow and anisotropy[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(11): 1957-1964. (in Chinese))
    [10] LANDVA A O, PELKEY S G, VALSANGKAR A J. Coefficient of permeability of municipal refuse[C]// Proceedings of the 3rd International Congress on Environmental Geotechnics. Lisbon, 1998: 63-68.
    [11] HUDSON A P. Evaluation of the vertical and horizontal hydraulic conductivities of household wastes[D]. Southampton: University of Southampton, 2007.
    [12] SINGH K, KADAMBALA R, JAIN P, et al. Anisotropy estimation of compacted municipal solid waste using pressurized vertical well liquids injection[J]. Waste Management & Research, 2014, 32(6): 482-491.
    [13] CJJ 176—2012 生活垃圾卫生填埋场岩土工程技术规范[S]. 2012. (CJJ 176—2012 Technical code for geotechnical engineering of municipal solid waste sanitary landfill[S]. 2012. (in Chinese))
    [14] GB/T 50123—1999 土工试验方法标准[S]. 1999. (GB/T 50123—1999 Standard for soil test method[S]. 1999. (in Chinese))
    [15] 陈崇希, 林 敏. 地下水动力学[M]. 武汉: 中国地质大学出版社, 1999. (CHEN Chong-xi, LIN Min. Groundwater dynamics [M]. Wuhan: China University of Geosciences Press, 1999. (in Chinese))
    [16] SL320—2005 水利水电工程钻孔抽水试验规程[S]. 2005. (SL320—2005 Borehole pumping test procedures for water resources and hydropower engineering[S]. 2005. (in Chinese))
    [17] CLÉMENT R, OXARANGO L, DESCLOITRES M. Contribution of 3-D time-lapse ERT to the study of leachate recirculation in a landfill[J]. Waste Management, 2011, 31(3): 457-467.
    [18] ROSQUIST H, LEROUX V, DAHLIN T, et al. Mapping landfill gas migration using resistivity monitoring[J]. Waste and Resource Management, 2011, 164(1): 3-15.
    [19] LING C, ZHOU Q, XUE Y, et al. Application of electrical resistivity tomography to evaluate the variation in moisture content of waste during 2 months of degradation[J]. Environmental Earth Sciences, 2013, 68(1): 57-67.
    [20] 蒋小明. 高密度电阻率法用于垃圾填埋体液气分布探测的试验研究[D]. 杭州: 浙江大学, 2016. (JIANG Xiao-ming. An experimental study on detection of leachate and gas distribution in municipal solid waste landfill using electrical resistivity tomography[D]. Hangzhou: Zhejiang University, 2016. (in Chinese))
    [21] GRELLIER S, REDDY K R, GANGATHULASI J, et al. Correlation between electrical resistivity and moisture content of municipal solid waste in bioreactor landfill[J]. Geoenvironmental Engineering, 2007, 226: 1-14.
  • 期刊类型引用(9)

    1. 史金权,王磊,张轩铭,赵航,吴秉阳,赵航行,刘汉龙,肖杨. 微生物加固钙质砂地基电阻率特性试验研究. 岩土工程学报. 2024(02): 244-253 . 本站查看
    2. 吴育林,陈展,王哲,王振梁,沈婷婷. 原位水力循环修复污染土壤土柱试验研究. 工程勘察. 2023(06): 38-47 . 百度学术
    3. 陈宏信,吕东江,冯世进,张晓磊,吴少杰. 某低厨余填埋场垃圾物理力学特性演化规律. 岩土工程学报. 2023(09): 1850-1858 . 本站查看
    4. 史鹏钰,宗一杰,滕开庆,刘健军,肖良. 非承压含水层定水头抽水两区井流数值模型研究. 煤田地质与勘探. 2023(10): 124-133 . 百度学术
    5. 章涛,施建勇,吴珣,韩尚宇,纪晓磊,张慧华. 单井注水改变填埋场中垃圾土温度的模拟. 岩土力学. 2022(02): 499-510 . 百度学术
    6. 盛丰,文鼎,熊祎玮,王康. 基于电阻率层析成像技术的农田土壤优先流原位动态监测. 农业工程学报. 2021(08): 117-124 . 百度学术
    7. 杜鹏辉,余建民,赵贵章. 亚黏土典型剖面电阻率-含水率关系模型研究. 水利与建筑工程学报. 2021(04): 36-40 . 百度学术
    8. 张泰丽,闫永帅,伍剑波,孙强,朱延辉. 粉质黏土天然边坡含水率-电阻率模型研究. 灌溉排水学报. 2020(S1): 126-129 . 百度学术
    9. 闫亚景,闫永帅,赵贵章,张泰丽,孙强. 基于高密度电法的天然边坡水分运移规律研究. 岩土力学. 2019(07): 2807-2814 . 百度学术

    其他类型引用(12)

计量
  • 文章访问数:  335
  • HTML全文浏览量:  6
  • PDF下载量:  273
  • 被引次数: 21
出版历程
  • 修回日期:  2017-03-20
  • 发布日期:  2018-05-24

目录

    /

    返回文章
    返回