Experimental study on artificial recharge of second Tianjin silt and silty sand micro-confined aquifer
-
摘要: 天津、上海等地已尝试采用回灌措施控制基坑降水引起的承压含水层水头下降及引起的沉降,然而目前回灌理论尚缺乏研究,在粉土粉砂微承压含水层中进行回灌的可行性也急需研究。因此本文在邻近天津某地铁基坑工程的场地外开展了一系列单井回灌、群抽群灌试验以及单抽单灌现场试验。试验结果表明,在粉土、粉砂为主的土层进行回灌是可行的。采用抽水试验得到的水文地质参数可以用于预测回灌的水位抬升,但是相同流量下,在距中心井较近距离内(约5~7 m内),回灌产生的水位上升值显著大于抽水导致的水位降落值。加压回灌可以显著提高回灌效率。回灌量与抽水量维持在相近水平可以有效控制周边地表及建筑物沉降。当回灌停止后,周边地表沉降有快速发展的趋势,因此在实际工程中,抽水停止后应适当延长回灌时间,逐步减小回灌量,使地下水位逐步回稳,避免抽灌活动结束后沉降的快速发展。采用双井组合回灌技术可有效的控制回灌井回扬时引起的含水层水位的下降。Abstract: The recharge measures are used to try to control the settlement and head down of the confined aquifers caused by the pumping of the foundation pits in Tianjin, Shanghai and other regions. However, the researches on the theory of recharge are still deficient, and the feasibility of recharging in the micro-confined aquifer of silt and sandy silt is also urgently needed. Therefore, a series of single-well recharge tests, group-pumped and group-recharge tests and double-combined recharge tests near a subway foundation pit project in Tianjin are carried out. The test results show that it is feasible to recharge in silt and fine sand as the main component of the soil layer, and the pumping theory can be used to predict the change of the water level in confined aquifers caused by recharge in practical engineering within a certain range. The hydrogeological parameters obtained by the pumping tests can be used to predict the rise of the water level of the recharge, but at the same flow rate, the uplift of the water level generated by recharge is significantly greater than the drawdown of the water level caused by pumping within the distance from the center well (about 5 ~ 7 m). The pressurized recharge can improve the efficiency remarkably. The amounts of recharge and pumping at a similar level can effectively control the settlements of the surrounding surface and buildings. The surrounding surface subsidence has a rapid development trend when the recharge is stopped. In practical engineering, in order to avoid such a settlement trend with rapid growth, the recharge time is properly extended after pumping is stopped, the amount of recharge is gradually reduced, and the groundwater level is gradually stabilized so as to avoid the rapid development of settlements at the end of pumping and recharge. The twin-well combined recharge technique can be used to control the decline of the water level of aquifers caused by the discharge of the recharge well.
-
[1] 张莲花, 孔德坊. 沉降变形控制的基坑降水最优化方法及应用[J]. 岩土工程学报, 2005, 27(10): 1171-1174.
(ZHANG Lian-hua, KONG De-fang.Optimization method and application of pit dewatering for controlling settlement[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(10): 1171-1174. (in Chinese))[2] 金小荣, 俞建霖, 祝哨晨, 等. 基坑降水引起周围土体沉降性状分析[J]. 岩土力学, 2005, 26(10): 1575-1581.
(JIN Xiao-rong, YU Jian-lin, ZHU Xiao-chen, et al.Analysis of behavior of settlement of pit’s surrounding soils by dewatering[J]. Rock and Soil Mechanics, 2005, 26(10): 1575-1581. (in Chinese))[3] 骆祖江, 李朗, 姚天强, 等. 松散承压含水层地区深基坑降水三维渗流与地面沉降耦合模型[J]. 岩土工程学报, 2006, 28(11): 1947-1951.
(LUO Zu-jiang, LI Lang, YAO Tian-qiang, et al.Coupling model of three dimensional seepage and land-subsidence for dewatering of deep foundation pit in loose confined aquifers[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(11): 1947-1951. (in Chinese))[4] 吴建中, 王寒梅, 杨天亮. 浅层地下水人工回灌应用于上海市工程性地面沉降防治的试验研究[J]. 现代地质, 2009, 23(6): 1194-1200.
(WU Jian-zhong, WANG Han-mei, YANG Tian-liang.Experimental research on artifical recharge to shallow aquifer to control land subsidence due to construction in Shanghai City[J]. Geoscience, 2009, 23(6): 1194-1200. (in Chinese))[5] 瞿成松, 徐丹. 地下水回灌在地铁边基坑降水中的应用[J]. 岩土工程技术, 2012, 26(5): 238-241.
(QU Cheng-song, XU Dan.Groundwater recharge of pit dewatering close to the metro[J]. Geotechnical Engineering Technique, 2012, 26(5): 238-241. (in Chinese))[6] 郑刚, 曾超峰, 刘畅, 等. 天津首例基坑工程承压含水层回灌实测研究[J]. 岩土工程学报, 2013, 35(增刊2): 491-495.
(ZHENG Gang, ZENG Chao-feng, LIU Chang, et al.Field observation of artificial recharge of confined water in first excavation case in Tianjin[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(S2): 491-495. (in Chinese))[7] 俞建霖, 龚晓南. 基坑工程地下水回灌系统的设计与应用技术研究[J]. 建筑结构学报, 2001, 22(5): 70-74.
(YU Jian-lin, GONG Xiao-nan.Study on the design and the application of the groundwater recharge system in excavation[J]. Journal of Building Structures, 2001, 22(5): 70-74. (in Chinese))[8] BUTLER J J, HEALEY J M.Relationship Between pumping‐test and slug‐test parameters: scale effect or artifact?[J]. Ground Water, 1998, 36(2): 305-312. [9] COES A L, SPRUILL T B, THOMASSON M J.Multiple- method estimation of recharge rates at diverse locations in the North Carolina Coastal Plain, USA[J]. Hydrogeology Journal, 2007, 15(4): 773-788. [10] VOUDOURIS K, DIAMANTOPOULOU P, GIANNATOS G, et al.Groundwater recharge via deep boreholes in the Patras Industrial Area aquifer system (NW Peloponnesus, Greece)[J]. Bulletin of Engineering Geology and the Environment, 2006, 65(3): 297-308. [11] SHEN S L, XU Y S.Numerical evaluation of land subsidence induced by groundwater pumping in Shanghai[J]. Canadian Geotechnical Journal, 2011, 48(9): 1378-1392. [12] TÜGEL F, HOUBEN G J, GRAF T. How appropriate is the Thiem equation for describing groundwater flow to actual wells?[J]. Hydrogeology Journal, 2016, 24(8): 2093-2101. [13] JAZAEI F, SIMPSON M J, CLEMENT T P.Spatial analysis of aquifer response times for radial flow processes: nondimensional analysis and laboratory-scale tests[J]. Journal of Hydrology, 2016(532): 1-8. [14] COOPER H H, JACOB C E.A generalized graphical method for evaluating formation constants and summarizing well‐field history[J]. Eos, Transactions American Geophysical Union, 1946, 27(4): 526-534. [15] 薛禹群. 地下水动力学[M]. 北京: 地质出版社, 1997.
(XUE Yu-qun.Groundwater dynamics[M]. Beijing: Geological Publishing House, 1997. (in Chinese))[16] 张扬清, 冉岸绿, 武朝军, 等. 降压回灌作用下黏土的渗透特性试验研究[J]. 岩土工程学报, 2015, 37(增刊1): 21-25.
(ZHANG Yang-qing, RAN An-lv, WU Chao-jun, et al.Experimental study on permeability properties of soft clay in process of pumping and recharge[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(S1): 21-25. (in Chinese))[17] 吴昌瑜, 张伟, 李思慎, 等. 减压井机械淤堵机制与防治方法试验研究[J]. 岩土力学, 2009, 30(10): 3181-3187.
(WU Chang-yu, ZHANG Wei, LI Si-shen, et al.Research on mechanical clogging mechanism of releaf well and its control method[J]. Rock and Soil Mechanics, 2009, 30(10): 3181-3187. (in Chinese))[18] 李识博, 王常明, 王钢城, 等. 松散堆积物坝基渗透淤堵试验及颗粒流模拟[J]. 水利学报, 2012, 43(10): 1163-1170.
(LI Shi-bo, WANG Chang-ming, WANG Gang-cheng, et al.Infiltration clogging test and simulation by PFC3D for loose dam foundation[J]. Journal of Hydraulic Engineering, 2012, 43(10): 1163-1170. (in Chinese))[19] 李旺林, 束龙仓, 李砚阁, 等. 承压-潜水含水层完整反滤回灌井的稳定流计算[J]. 工程勘察, 2006(5): 27-30.
(LI Wang-lin, SHU Long-cang, LI Yan-ge, et al.Calculation of steady flow in complete recharge well with filter layer with submerged aquifer[J]. Journal of Geotechnical Investigation & Surveying, 2006(5): 27-30. (in Chinese)) -
期刊类型引用(29)
1. 赵刚,马健,韩玉珍,于天飞,李旭光. 承压含水层完整井降水回灌水量计算方法研究. 勘察科学技术. 2024(03): 14-18+43 . 百度学术
2. 唐红,刘鑫,张友光,黎洁,郝齐龙,熊世奇. 临江地区已有地下结构对新建基坑的影响. 水利规划与设计. 2024(12): 126-131 . 百度学术
3. 杜策,周振,张力,张振,叶怀文. 软土地区超深基坑多层承压水控制技术研究. 施工技术(中英文). 2024(23): 29-35 . 百度学术
4. 孙前林,谭卫佳,徐蓓艺,王旭东. 矩形边界越流承压含水层中非完整井稳定流解析解. 应用数学和力学. 2023(08): 909-920 . 百度学术
5. 武永霞,沈水龙. 悬挂式止水帷幕下基坑内外抽灌承压水的计算方法. 岩土工程学报. 2023(09): 1971-1978 . 本站查看
6. 阮艳妹,徐文田,李牧羽. 沿海复杂地层深基坑地下水控制引发的地表沉降规律分析. 西安建筑科技大学学报(自然科学版). 2023(05): 712-719 . 百度学术
7. 郑刚. 软土地区基坑工程变形控制方法及工程应用. 岩土工程学报. 2022(01): 1-36+201 . 本站查看
8. 仲志武. 软土地区基坑粉砂承压含水层抽灌试验. 南京工业大学学报(自然科学版). 2022(04): 419-427 . 百度学术
9. 赵可新,兰双双,谷洪彪,梁文宇,乔鹏. 基于井水位潮汐响应探讨含水层的水力特征及其变化. 南水北调与水利科技(中英文). 2022(04): 802-813 . 百度学术
10. 魏巍,李进,薛钰,张连杰. 火力发电工程浓盐水回注系统应用研究. 电力勘测设计. 2022(11): 47-51+72 . 百度学术
11. 郭景琢,李钟顺,龙燕武,陈昊. 基坑工程地下水回灌技术基本特性的研究. 地下空间与工程学报. 2022(S2): 800-812 . 百度学术
12. 李又云,王欢,苏世强,李昊阳. 软土深基坑单井回灌参数优化与现场测试分析. 地下空间与工程学报. 2021(02): 520-528 . 百度学术
13. 李卫华,刘天任,洪小星,景旭成,谭勇. 全断面富水砂性地层中地铁深基坑抽水回灌试验研究. 南通大学学报(自然科学版). 2021(01): 65-74 . 百度学术
14. 赵静波. 基坑降水引起围护结构和地下主体结构变形分析. 天津城建大学学报. 2021(02): 116-121 . 百度学术
15. 朱亚坤. 地下水回灌措施在地铁深基坑工程中的应用. 天津建设科技. 2021(04): 43-44 . 百度学术
16. 仲志武. 软土地区地连墙与回灌井相互影响研究. 建筑科学与工程学报. 2021(06): 98-107 . 百度学术
17. 王彭宇. 阜阳市高铁西站地下水回灌试验研究. 低温建筑技术. 2020(01): 120-123 . 百度学术
18. 石伟航,徐帮树,马秀媛,路林海,夏鹏,李罡. 砂卵石地层非稳定流回灌模型试验研究. 科学技术与工程. 2020(10): 4073-4079 . 百度学术
19. 郑刚,栗晴瀚,程雪松,哈达,赵悦镔. 承压层快速减压与回灌应用于隧道抢险的理论与设计. 岩土力学. 2020(S1): 208-216 . 百度学术
20. 孙剑平,许瑞健,江宗宝,邵广彪. 济南承压含水层场地单井常压回灌试验研究. 山东建筑大学学报. 2020(03): 7-12 . 百度学术
21. 刘祥勇,宋享桦,谭勇,景旭成. 南通富水砂性地层地铁深基坑抽水回灌现场试验研究. 岩土工程学报. 2020(07): 1331-1340 . 本站查看
22. 郭枫,王贵和,阚生雷,赵刚. 北京地区厚卵石潜水层现场回灌试验研究. 科学技术与工程. 2020(32): 13379-13385 . 百度学术
23. 郑刚,赵悦镔,程雪松,哈达,栗晴瀚. 复杂地层中基坑降水引发的水位及沉降分析与控制对策. 土木工程学报. 2019(S1): 135-142 . 百度学术
24. 郑刚,曹剑然,程雪松,哈达. 考虑承压含水层间越流的地下水回灌现场试验研究. 岩土工程学报. 2019(09): 1609-1618 . 本站查看
25. 李佳蓓,童刚强. 天津地铁深基坑深层承压水水力联系试验研究. 天津建设科技. 2019(06): 11-14 . 百度学术
26. 唐安业. 基坑降水回灌技术在济南轨道交通R1线演马庄西站工程中的应用. 施工技术. 2018(S1): 88-92 . 百度学术
27. 李天宇,林山杉,胡正,高远. 均质承压水渗流实验中的非均匀渗流问题研究. 西北师范大学学报(自然科学版). 2018(05): 107-114 . 百度学术
28. 郑刚,栗晴瀚,哈达,程雪松. 天津市承压层应力状态及减压引发沉降规律研究. 岩土力学. 2018(S2): 285-294 . 百度学术
29. 张连杰,刘礼领. 巴基斯坦塔尔地区抽灌试验分析. 勘察科学技术. 2018(S1): 79-82 . 百度学术
其他类型引用(12)
计量
- 文章访问数: 427
- HTML全文浏览量: 3
- PDF下载量: 326
- 被引次数: 41